ANNEX I

SUMMARY OF PRODUCT CHARACTERISTICS
1. NAME OF THE MEDICINAL PRODUCT

Epclusa 400 mg/100 mg film-coated tablets
Epclusa 200 mg/50 mg film-coated tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Epclusa 400 mg/100 mg film-coated tablets
Each film-coated tablet contains 400 mg sofosbuvir and 100 mg velpatasvir.

Epclusa 200 mg/50 mg film-coated tablets
Each film-coated tablet contains 200 mg sofosbuvir and 50 mg velpatasvir.
For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Film-coated tablet.

Epclusa 400 mg/100 mg film-coated tablets
Pink, diamond-shaped, film-coated tablet of dimensions 20 mm x 10 mm, debossed on one side with “GSI” and “7916” on the other side.

Epclusa 200 mg/50 mg film-coated tablets
Pink, oval-shaped, film-coated tablets of dimensions 14 mm x 7 mm, debossed on one side with “GSI” and “S/V” on the other side.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Epclusa is indicated for the treatment of chronic hepatitis C virus (HCV) infection in patients 3 years of age and older (see sections 4.2, 4.4 and 5.1).

4.2 Posology and method of administration

Epclusa treatment should be initiated and monitored by a physician experienced in the management of patients with HCV infection.

Posology

The recommended dose of Epclusa in adults is one 400 mg/100 mg tablet, taken orally, once daily with or without food (see section 5.2).

The recommended dose of Epclusa in paediatric patients aged 3 years and above is based on weight as detailed in Table 3.

A granule formulation of Epclusa is available for the treatment of chronic HCV infection in paediatric patients aged 3 years and above having difficulty swallowing film-coated tablets. For patients
weighing < 17 kg, please refer to the Summary of Product Characteristics for Epclusa 200 mg/50 mg or 150 mg/37.5 mg granules.

Table 1: Recommended treatment and duration for adults regardless of HCV genotypes

<table>
<thead>
<tr>
<th>Adult patient population*</th>
<th>Treatment and duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients without cirrhosis and patients with compensated cirrhosis</td>
<td>Epclusa for 12 weeks</td>
</tr>
<tr>
<td>Addition of ribavirin may be considered for genotype 3 infected patients with compensated cirrhosis (see section 5.1)</td>
<td></td>
</tr>
<tr>
<td>Patients with decompensated cirrhosis</td>
<td>Epclusa + ribavirin for 12 weeks</td>
</tr>
</tbody>
</table>

*Includes patients co-infected with human immunodeficiency virus (HIV) and patients with recurrent HCV post-liver transplant (see section 4.4).

When used in combination with ribavirin, refer also to the Summary of Product Characteristics of the medicinal product containing ribavirin.

The following dosing is recommended for adults where ribavirin is divided in two daily doses and given with food:

Table 2: Guidance for ribavirin dosing when administered with Epclusa to adults with decompensated cirrhosis

<table>
<thead>
<tr>
<th>Adult patient</th>
<th>Ribavirin dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child-Pugh-Turcotte (CPT) Class B cirrhosis pre-transplant</td>
<td>1,000 mg per day for patients < 75 kg and 1,200 mg for those weighing ≥ 75 kg</td>
</tr>
<tr>
<td>CPT Class C cirrhosis pre-transplant</td>
<td>Starting dose of 600 mg, which can be titrated up to a maximum of 1,000/1,200 mg (1,000 mg for patients weighing < 75 kg and 1,200 mg for patients weighing ≥ 75 kg) if well tolerated. If the starting dose is not well tolerated, the dose should be reduced as clinically indicated based on haemoglobin levels</td>
</tr>
<tr>
<td>CPT Class B or C post-transplant</td>
<td></td>
</tr>
</tbody>
</table>

If ribavirin is used in genotype 3 infected adult patients with compensated cirrhosis (pre- or post-transplant) the recommended dose of ribavirin is 1,000/1,200 mg (1,000 mg for adult patients weighing < 75 kg and 1,200 mg for adult patients weighing ≥ 75 kg).

For ribavirin dose modifications, refer to the Summary of Product Characteristics of the medicinal product containing ribavirin.

**Table 3: Recommended treatment and duration for paediatric patients aged 3 to < 18 Years regardless of HCV genotype using Epclusa Tablets*

<table>
<thead>
<tr>
<th>Body weight (kg)</th>
<th>Dosing of Epclusa tablets</th>
<th>Sofosbuvir/Velpatasvir daily dose</th>
<th>Recommended treatment regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 30</td>
<td>one 400 mg/100 mg tablet once daily</td>
<td>400 mg/100 mg per day</td>
<td>Epclusa for 12 weeks</td>
</tr>
<tr>
<td></td>
<td>or two 200 mg/50 mg tablets once daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 to < 30</td>
<td>one 200 mg/50 mg tablet once daily</td>
<td>200 mg/50 mg per day</td>
<td></td>
</tr>
</tbody>
</table>

Epclusa is also available as granules for paediatric patients with chronic HCV infection aged 3 years and above. For patients weighing < 17 kg, please refer to the Summary of Product Characteristics for Epclusa 200 mg/50 mg or 150 mg/37.5 mg granules.
Patients should be instructed that if vomiting occurs within 3 hours of dosing an additional tablet of Epclusa should be taken. If vomiting occurs more than 3 hours after dosing, no further dose of Epclusa is needed (see section 5.1).

If a dose of Epclusa is missed and it is within 18 hours of the normal time, patients should be instructed to take the tablet as soon as possible and then patients should take the next dose at the usual time. If it is after 18 hours then patients should be instructed to wait and take the next dose of Epclusa at the usual time. Patients should be instructed not to take a double dose of Epclusa.

Adult patients who have previously failed therapy with an NS5A-containing regimen
Epclusa + ribavirin for 24 weeks may be considered (see section 4.4).

Elderly
No dose adjustment is warranted for elderly patients (see section 5.2).

Renal impairment
No dose adjustment of Epclusa is required for patients with mild or moderate renal impairment.

Safety data are limited in patients with severe renal impairment (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73 m²) and end stage renal disease (ESRD) requiring haemodialysis. Epclusa can be used in these patients with no dose adjustment when no other relevant treatment options are available (see sections 4.4, 5.1 and 5.2).

Hepatic impairment
No dose adjustment of Epclusa is required for patients with mild, moderate, or severe hepatic impairment (CPT Class A, B, or C) (see section 5.2). Safety and efficacy of Epclusa have been assessed in patients with CPT Class B cirrhosis, but not in patients with CPT Class C cirrhosis (see sections 4.4 and 5.1).

Paediatric population
The safety and efficacy of Epclusa in children aged less than 3 years have not been established. No data are available.

Method of administration
For oral use.

Patients should be instructed to swallow the tablet(s) whole with or without food (see section 5.2). Due to the bitter taste, it is recommended that film-coated tablets are not chewed or crushed.

4.3 Contraindications
Hypersensitivity to the active substances or to any of the excipients listed in section 6.1.

Medicinal products that are strong P-glycoprotein (P-gp) and/or strong cytochrome P450 (CYP) inducers (carbamazepine, phenobarbital, phenytoin, rifampicin, rifabutin and St. John’s wort) (see section 4.5).

4.4 Special warnings and precautions for use
Epclusa should not be administered concurrently with other medicinal products containing sofosbuvir.

Severe bradycardia and heart block
Life-threatening cases of severe bradycardia and heart block have been observed when sofosbuvir-containing regimens are used in combination with amiodarone. Bradycardia has generally occurred
within hours to days, but cases with a longer time to onset have been observed mostly up to 2 weeks after initiating HCV treatment.

Amiodarone should only be used in patients on Epclusa when other alternative anti-arrhythmic treatments are not tolerated or are contraindicated.

Should concomitant use of amiodarone be considered necessary, it is recommended that patients undergo cardiac monitoring in an in-patient setting for the first 48 hours of co-administration, after which outpatient or self-monitoring of the heart rate should occur on a daily basis through at least the first 2 weeks of treatment.

Due to the long half-life of amiodarone, cardiac monitoring as outlined above should also be carried out for patients who have discontinued amiodarone within the past few months and are to be initiated on Epclusa.

All patients with concurrent or recent use of amiodarone should be warned of the symptoms of bradycardia and heart block and should be advised to seek medical advice urgently should they experience them.

HCV/HBV (hepatitis B virus) co-infection

Cases of hepatitis B virus (HBV) reactivation, some of them fatal, have been reported during or after treatment with direct-acting antiviral medicinal products. HBV screening should be performed in all patients before initiation of treatment. HBV/HCV co-infected patients are at risk of HBV reactivation, and should, therefore, be monitored and managed according to current clinical guidelines.

Patients who have previously failed therapy with an NS5A-containing regimen

There are no clinical data to support the efficacy of sofosbuvir/velpatasvir for the treatment of patients who have failed treatment with a regimen containing another NS5A inhibitor. However, on the basis of NS5A resistance associated variants (RAVs) typically seen in patients who have failed therapy with other NS5A inhibitor containing regimens, the \textit{in vitro} pharmacology of velpatasvir, and the outcomes of sofosbuvir/velpatasvir treatment in NS5A-naïve patients with baseline NS5A RAVs enrolled into the ASTRAL-studies, treatment with Epclusa + RBV for 24 weeks can be considered for patients who have failed therapy on an NS5A-containing regimen and who are deemed at high risk for clinical disease progression and who do not have alternative treatment options.

Renal impairment

Safety data are limited in patients with severe renal impairment (eGFR < 30 mL/min/1.73 m²) and ESRD requiring haemodialysis. Epclusa can be used in these patients with no dose adjustment when no other relevant treatment options are available (see sections 5.1 and 5.2). When Epclusa is used in combination with ribavirin refer also to the Summary of Product Characteristics for ribavirin for patients with creatinine clearance < 50 mL/min (see section 5.2).

Use with moderate P-gp inducers and/or moderate CYP inducers

Medicinal products that are moderate P-gp and/or moderate CYP inducers (e.g. efavirenz, modafinil, oxcarbazepine or rifapentine) may decrease sofosbuvir or velpatasvir plasma concentrations leading to reduced therapeutic effect of Epclusa. Co-administration of such medicinal products with Epclusa is not recommended (see section 4.5).

Use with certain HIV antiretroviral regimens

Epclusa has been shown to increase tenofovir exposure, especially when used together with an HIV regimen containing tenofovir disoproxil fumarate and a pharmacokinetic enhancer (ritonavir or cobicistat). The safety of tenofovir disoproxil fumarate in the setting of Epclusa and a pharmacokinetic
Enhancer has not been established. The potential risks and benefits associated with co-administration of Epclusa with the fixed-dose combination tablet containing elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate or tenofovir disoproxil fumarate given in conjunction with a boosted HIV protease inhibitor (e.g. atazanavir or darunavir) should be considered, particularly in patients at increased risk of renal dysfunction. Patients receiving Epclusa concomitantly with elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate or with tenofovir disoproxil fumarate and a boosted HIV protease inhibitor should be monitored for tenofovir-associated adverse reactions. Refer to tenofovir disoproxil fumarate, emtricitabine/tenofovir disoproxil fumarate, or elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate Summary of Product Characteristics for recommendations on renal monitoring.

Use in diabetic patients

Diabetics may experience improved glucose control, potentially resulting in symptomatic hypoglycaemia, after initiating HCV direct-acting antiviral treatment. Glucose levels of diabetic patients initiating direct-acting antiviral therapy should be closely monitored, particularly within the first 3 months, and their diabetic treatment modified when necessary. The physician in charge of the diabetic care of the patient should be informed when direct-acting antiviral therapy is initiated.

CPT Class C cirrhosis

Safety and efficacy of Epclusa has not been assessed in patients with CPT Class C cirrhosis (see section 5.1).

Liver transplant patients

The safety and efficacy of Epclusa in the treatment of HCV infection in patients who are post-liver transplant have not been assessed. Treatment with Epclusa in accordance with the recommended posology (see section 4.2) should be guided by an assessment of the potential benefits and risks for the individual patient.

Excipients

This medicinal product contains less than 1 mmol sodium (23 mg) per tablet, that is to say essentially ‘sodium-free’.

4.5 Interaction with other medicinal products and other forms of interaction

As Epclusa contains sofosbuvir and velpatasvir, any interactions that have been identified with these active substances individually may occur with Epclusa.

Potential for Epclusa to affect other medicinal products

Velpatasvir is an inhibitor of drug transporter P-gp, breast cancer resistance protein (BCRP), organic anion-transporting polypeptide (OATP) 1B1 and OATP1B3. Co-administration of Epclusa with medicinal products that are substrates of these transporters may increase the exposure of such medicinal products. See Table 4 for examples of interactions with sensitive substrates of P-gp (digoxin), BCRP (rosuvastatin), and OATP (pravastatin).

Potential for other medicinal products to affect Epclusa

Sofosbuvir and velpatasvir are substrates of drug transporters P-gp and BCRP. Velpatasvir is also a substrate of drug transporter OATP1B. In vitro, slow metabolic turnover of velpatasvir by CYP2B6, CYP2C8 and CYP3A4 was observed. Medicinal products that are strong inducers of P-gp and/or strong inducers of CYP2B6, CYP2C8, or CYP3A4 (e.g. carbamazepine, phenobarbital and phenytoin, rifampicin, rifabutin and St. John’s wort) may decrease plasma concentrations of sofosbuvir or velpatasvir leading to reduced therapeutic effect of sofosbuvir/velpatasvir. The use of such medicinal
products with Epclusa is contraindicated (see section 4.3). Medicinal products that are moderate P-gp inducers and/or moderate CYP inducers (e.g. efavirenz, modafinil, oxcarbazepine or rifapentine) may decrease sofosbuvir or velpatasvir plasma concentration leading to reduced therapeutic effect of Epclusa. Co-administration with such medicinal products is not recommended with Epclusa (see section 4.4). Co-administration with medicinal products that inhibit P-gp or BCRP may increase sofosbuvir or velpatasvir plasma concentrations. Medicinal products that inhibit OATP, CYP2B6, CYP2C8, or CYP3A4 may increase plasma concentration of velpatasvir. Clinically significant medicinal product interactions with Epclusa mediated by P-gp, BCRP, OATP, or CYP450 inhibitors are not expected; Epclusa may be co-administered with P-gp, BCRP, OATP and CYP inhibitors.

Patients treated with vitamin K antagonists

As liver function may change during treatment with Epclusa, a close monitoring of International Normalised Ratio (INR) values is recommended.

Impact of DAA therapy on medicinal products metabolized by the liver

The pharmacokinetics of medicinal products that are metabolized by the liver (e.g. immunosuppressive medicinal products such as calcineurin inhibitors) may be impacted by changes in liver function during DAA therapy, related to clearance of HCV.

Interactions between Epclusa and other medicinal products

Table 4 provides a listing of established or potentially clinically significant medicinal product interactions (where 90% confidence interval [CI] of the geometric least-squares mean [GLSM] ratio were within “↔”, extended above “↑”, or extended below “↓” the predetermined interaction boundaries). The medicinal product interactions described are based on studies conducted with either sofosbuvir/velpatasvir or velpatasvir and sofosbuvir as individual agents, or are predicted medicinal product interactions that may occur with sofosbuvir/velpatasvir. The table is not all-inclusive.

Table 4: Interactions between Epclusa and other medicinal products

<table>
<thead>
<tr>
<th>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</th>
<th>Effects on medicinal product levels. Mean ratio (90% confidence interval)(^a,b)</th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACID REDUCING AGENTS</td>
<td></td>
<td>Velpatasvir solubility decreases as pH increases. Medicinal products that increase gastric pH are expected to decrease the concentration of velpatasvir.</td>
</tr>
</tbody>
</table>
| Antacids | Interaction not studied. *Expected.*

\(\leftrightarrow\) Sofosbuvir

\(\downarrow\) Velpatasvir | It is recommended to separate antacid and Epclusa administration by 4 hours. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g. Aluminium or magnesium hydroxide; calcium carbonate (Increase in gastric pH)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) GLSM = Geometric least squares mean

\(^b\) CI = Confidence interval
<table>
<thead>
<tr>
<th>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</th>
<th>Effects on medicinal product levels. Mean ratio (90% confidence interval)(^{a,b})</th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂-receptor antagonists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Famotidine (40 mg single dose)/ sofosbuvir/ velpatasvir (400/ 100 mg single dose)(^{c})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Famotidine dosed simultaneously with Epclusa(^{d})</td>
<td>Velpatasvir ↓ 0.80 (0.70, 0.91) ↓ 0.81 (0.71, 0.91)</td>
<td></td>
</tr>
<tr>
<td>Cimetidine(^{e}) Nizatidine(^{e}) Ranitidine(^{e}) (Increase in gastric pH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Famotidine (40 mg single dose)/ sofosbuvir/ velpatasvir (400/ 100 mg single dose)(^{c})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Famotidine dosed 12 hours prior to Epclusa(^{d}) (Increase in gastric pH)</td>
<td>Velpatasvir ↔ ↔</td>
<td></td>
</tr>
<tr>
<td>Proton pump inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omeprazole (20 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg single dose fasted)(^{f})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omeprazole dosed simultaneously with Epclusa(^{d})</td>
<td>Velpatasvir ↓ 0.63 (0.50, 0.78) ↓ 0.64 (0.52, 0.79)</td>
<td></td>
</tr>
<tr>
<td>Lansoprazole(^{e}) Rabeprazole(^{e}) Pantoprazole(^{e}) Esomeprazole(^{e}) (Increase in gastric pH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omeprazole (20 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg single dose fed)(^{f})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omeprazole dosed 4 hours after Epclusa(^{d}) (Increase in gastric pH)</td>
<td>Velpatasvir ↓ 0.67 (0.58, 0.78) ↓ 0.74 (0.63, 0.86)</td>
<td></td>
</tr>
</tbody>
</table>

H₂-receptor antagonists may be administered simultaneously with or staggered from Epclusa at a dose that does not exceed doses comparable to famotidine 40 mg twice daily.

Co-administration with proton pump inhibitors is not recommended. If it is considered necessary to co-administer, then Epclusa should be administered with food and taken 4 hours before proton pump inhibitor at max doses comparable to omeprazole 20 mg.
<table>
<thead>
<tr>
<th>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</th>
<th>Effects on medicinal product levels. Mean ratio (90% confidence interval)</th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIARRHYTHMICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amiodarone</td>
<td>Effect on amiodarone, velpatasvir, and sofosbuvir concentrations unknown.</td>
<td>Co-administration of amiodarone with a sofosbuvir containing regimen may result in serious symptomatic bradycardia. Use only if no other alternative is available. Close monitoring is recommended if this medicinal product is administered with Epclusa (see sections 4.4 and 4.8).</td>
</tr>
<tr>
<td>Digoxin</td>
<td>Interaction only studied with velpatasvir. Expected: ↔ Sofosbuvir</td>
<td>Co-administration of Epclusa with digoxin may increase the concentration of digoxin. Caution is warranted and therapeutic concentration monitoring of digoxin is recommended when co-administered with Epclusa.</td>
</tr>
<tr>
<td>Digoxin (0.25 mg single dose)/ velpatasvir (100 mg single dose) (Inhibition of P-gp)</td>
<td>Effect on velpatasvir exposure not studied Expected: ↔ Velpatasvir</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observed: Digoxin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>(1.7, 2.1)</td>
<td>(1.1, 1.6)</td>
</tr>
<tr>
<td>ANTICOAGULANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dabigatran etexilate (Inhibition of P-gp)</td>
<td>Interaction not studied. Expected: ↑ Dabigatran ↔ Sofosbuvir ↔ Velpatasvir</td>
<td>Clinical monitoring, looking for signs of bleeding and anaemia, is recommended when dabigatran etexilate is co-administered with Epclusa. A coagulation test helps to identify patients with an increased bleeding risk due to increased dabigatran exposure.</td>
</tr>
<tr>
<td></td>
<td>Interaction not studied</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Close monitoring of INR is recommended with all vitamin K antagonists. This is due to liver function changes during treatment with Epclusa.</td>
<td></td>
</tr>
<tr>
<td>Vitamin K antagonists</td>
<td>Interaction not studied</td>
<td></td>
</tr>
<tr>
<td>ANTICONVULSANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenytoin (Induction of P-gp and CYPs)</td>
<td>Interaction not studied. Expected: ↓ Sofosbuvir ↓ Velpatasvir</td>
<td>Epclusa is contraindicated with phenobarbital and phenytoin (see section 4.3).</td>
</tr>
<tr>
<td>Phenobarbital (Induction of P-gp and CYPs)</td>
<td>Interaction not studied. Expected: ↓ Velpatasvir</td>
<td></td>
</tr>
<tr>
<td>Carbamazepine (Induction of P-gp and CYPs)</td>
<td>Interaction not studied. Expected: ↓ Velpatasvir</td>
<td>Epclusa is contraindicated with carbamazepine (see section 4.3).</td>
</tr>
<tr>
<td></td>
<td>Observed: Sofosbuvir</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>(0.43, 0.62)</td>
<td>(0.46, 0.59)</td>
</tr>
<tr>
<td>Oxcarbazepine (Induction of P-gp and CYPs)</td>
<td>Interaction not studied. Expected: ↓ Sofosbuvir ↓ Velpatasvir</td>
<td>Co-administration of Epclusa with oxcarbazepine is expected to decrease the concentration of sofosbuvir and velpatasvir, leading to reduced therapeutic effect of Epclusa. Co-administration is not recommended (see section 4.4).</td>
</tr>
<tr>
<td>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</td>
<td>Effects on medicinal product levels. Mean ratio (90% confidence interval)(^{a,b})</td>
<td>Recommendation concerning co-administration with Epclusa</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ANTIFUNGALS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Ketoconazole | Interaction only studied with velpatasvir
Expected: ↔ Sofosbuvir | No dose adjustment of Epclusa or ketoconazole is required. |
| Ketoconazole (200 mg twice daily)/ velpatasvir (100 mg single dose)\(^d\) | Effect on ketoconazole exposure not studied.
Expected: ↔ Ketoconazole

Observed:
Velpatasvir

$$\uparrow$$
(1.0, 1.6)
1.3
1.7
(1.4, 2.2) |

| **ANTIMYCOBACTERIALS** | | |
| Rifampicin (600 mg once daily)/ sofosbuvir (400 mg single dose)\(^d\) | Effect on rifampicin exposure not studied.
Expected: ↔ Rifampicin |
| Rifampicin (600 mg once daily)/ velpatasvir (100 mg single dose) | Effect on rifampicin exposure not studied.
Expected: ↔ Rifampicin

-Observed-:
Velpatasvir

$$\downarrow$$
(0.23, 0.29)
0.29
0.18
(0.15, 0.22) |
| Rifabutin | Interaction not studied.
Expected: ↓ Velpatasvir |
| Rifabutin | |

-Epclusa is contraindicated with rifabutin (see section 4.3).- |
Medicinal product by therapeutic areas/Possible Mechanism of Interaction

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Effects on medicinal product levels. Mean ratio (90% confidence interval) a,b</th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
</table>
| Rifapentine (Induction of P-gp and CYPs) | Interaction not studied.
- ↑ Sofosbuvir
- ↓ Velpatasvir | Co-administration of Epclusa with rifapentine is expected to decrease the concentration of sofosbuvir and velpatasvir, leading to reduced therapeutic effect of Epclusa. Co-administration is not recommended (see section 4.4). |

HIV ANTIVIRAL AGENTS: REVERSE TRANSCRIPTASE INHIBITORS

| Tenofovir disoproxil fumarate | Epclusa has been shown to increase tenofovir exposure (P-gp-inhibition). The increase in tenofovir exposure (AUC and C\textsubscript{max}) was around 40-80% during co-treatment with Epclusa and tenofovir disoproxil fumarate/emtricitabine as part of various HIV regimens. |

Patients receiving tenofovir disoproxil fumarate and Epclusa concomitantly should be monitored for adverse reactions associated with tenofovir disoproxil fumarate. Refer to the tenofovir disoproxil fumarate-containing product’s Summary of Product Characteristics for recommendations on renal monitoring (see section 4.4). |

| Efavirenz/ emtricitabine/ tenofovir disoproxil fumarate (600/ 200/ 300 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg once daily) c,d | Efavirenz ↔ ↔ ↔ | Co-administration of Epclusa with efavirenz/ emtricitabine/ tenofovir disoproxil fumarate is expected to decrease the concentration of velpatasvir. Co-administration of Epclusa with efavirenz-containing regimens is not recommended (see section 4.4). |

| Rilpivirine/ emtricitabine/ tenofovir disoproxil fumarate (200/ 25/ 300 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg once daily) c,d | Rilpivirine ↔ ↔ ↔ | No dose adjustment of Epclusa or emtricitabine/ rilpivirine/ tenofovir disoproxil fumarate is required. |

HIV ANTIVIRAL AGENTS: HIV PROTEASE INHIBITORS

| Atazanavir boosted with ritonavir (300/ 100 mg once daily) + emtricitabine/ tenofovir disoproxil fumarate (200/ 300 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg once daily) c,d | Atazanavir ↔ ↔ ↑ 1.4 (1.2, 1.6) | No dose adjustment of Epclusa, atazanavir (ritonavir boosted) or emtricitabine/ tenofovir disoproxil fumarate is required. |

Ritonavir	↔	↑ 1.3 (1.5, 1.4)	
Sofosbuvir	↔	↔	
Velpatasvir	↑ 1.6 (1.4, 1.7)	↑ 2.4 (2.2, 2.6)	↑ 4.0 (3.6, 4.5)

| Darunavir boosted with ritonavir (800/ 100 mg once daily) + emtricitabine/ tenofovir disoproxil fumarate (200/ 300 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg once daily) c,d | Darunavir ↔ ↔ ↔ | No dose adjustment of Epclusa, darunavir (ritonavir boosted) or emtricitabine/ tenofovir disoproxil fumarate is required. |

Ritonavir	↔	↔	
Sofosbuvir	↓ 0.62 (0.54, 0.71)	↓ 0.72 (0.66, 0.80)	
Velpatasvir	↓ 0.76 (0.65, 0.89)	↔	↔
Medicinal product by therapeutic areas/Possible Mechanism of Interaction

<table>
<thead>
<tr>
<th>Active</th>
<th>C<sub>max</sub></th>
<th>AUC</th>
<th>C<sub>min</sub></th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopinavir boosted with ritonavir (4x200 mg/ 50 mg once daily) + emtricitabine/tenofovir disoproxil fumarate (200/ 300 mg once daily)/sofosbuvir/velpatasvir (400/ 100 mg once daily)<sup>c, d</sup></td>
<td></td>
<td></td>
<td></td>
<td>No dose adjustment of Epclusa, lopinavir (ritonavir boosted) or emtricitabine/tenofovir disoproxil fumarate is required.</td>
</tr>
<tr>
<td>Sofosbuvir</td>
<td>↓ 0.59 (0.49, 0.71)</td>
<td>↓ 0.7 (0.6, 0.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velpatasvir</td>
<td>↓ 0.70 (0.59, 0.83)</td>
<td></td>
<td>↑ 1.6 (1.4, 1.9)</td>
<td></td>
</tr>
</tbody>
</table>

HIV ANTIVIRAL AGENTS: INTEGRASE INHIBITORS

<table>
<thead>
<tr>
<th>Active</th>
<th>C<sub>max</sub></th>
<th>AUC</th>
<th>C<sub>min</sub></th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raltegravir (400 mg twice daily)<sup>e</sup> + emtricitabine/tenofovir disoproxil fumarate (200/ 300 mg once daily)/sofosbuvir/velpatasvir (400/ 100 mg once daily)<sup>c, d</sup></td>
<td></td>
<td></td>
<td></td>
<td>No dose adjustment of Epclusa, raltegravir or emtricitabine/tenofovir disoproxil fumarate is required.</td>
</tr>
<tr>
<td>Sofosbuvir</td>
<td></td>
<td></td>
<td>↓ 0.79 (0.42, 1.5)</td>
<td></td>
</tr>
<tr>
<td>Velpatasvir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active</th>
<th>C<sub>max</sub></th>
<th>AUC</th>
<th>C<sub>min</sub></th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elvitegravir/ cobicistat/ emtricitabine/ tenofovir alafenamide fumarate (150/ 150/ 200/ 10 mg once daily)/sofosbuvir/velpatasvir (400/ 100 mg once daily)<sup>c, d</sup></td>
<td></td>
<td></td>
<td></td>
<td>No dose adjustment of Epclusa or elvitegravir/ cobicistat/ emtricitabine/ tenofovir alafenamide fumarate is required.</td>
</tr>
<tr>
<td>Sofosbuvir</td>
<td></td>
<td>↑ 1.4 (1.2, 1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velpatasvir</td>
<td>↑ 1.3 (1.2, 1.5)</td>
<td>↑ 1.5 (1.4, 1.7)</td>
<td>↑ 1.6 (1.4, 1.8)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active</th>
<th>C<sub>max</sub></th>
<th>AUC</th>
<th>C<sub>min</sub></th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elvitegravir/ cobicistat/ emtricitabine/ tenofovir disoproxil fumarate (150/ 150/ 200/ 300 mg once daily)/sofosbuvir/velpatasvir (400/ 100 mg once daily)<sup>c, d</sup></td>
<td></td>
<td></td>
<td></td>
<td>No dose adjustment of Epclusa or elvitegravir/ cobicistat/ emtricitabine/ tenofovir disoproxil fumarate is required.</td>
</tr>
<tr>
<td>Sofosbuvir</td>
<td></td>
<td></td>
<td>↑ 1.7 (1.5, 1.9)</td>
<td></td>
</tr>
<tr>
<td>Velpatasvir</td>
<td></td>
<td></td>
<td>↑ 1.4 (1.2, 1.5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active</th>
<th>C<sub>max</sub></th>
<th>AUC</th>
<th>C<sub>min</sub></th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolutegravir (50 mg once daily)/sofosbuvir/velpatasvir (400/ 100 mg once daily)</td>
<td></td>
<td></td>
<td></td>
<td>No dose adjustment of Epclusa or dolutegravir is required.</td>
</tr>
<tr>
<td>Sofosbuvir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velpatasvir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HERBAL SUPPLEMENTS

| St. John’s wort | Interaction not studied. Expected: ↓ Sofosbuvir ↓ Velpatasvir | Epclusa is contraindicated with St. John’s wort (see section 4.3). |

(Induction of P-gp and CYPs)
<table>
<thead>
<tr>
<th>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</th>
<th>Effects on medicinal product levels. Mean ratio (90% confidence interval)(^{a,b})</th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMG-CoA REDUCTASE INHIBITORS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Atorvastatin (40 mg single dose) + sofosbuvir / velpatasvir (400/100 mg once daily)\(^d\) | \(\text{Observed:}\) Atorvastatin
\(\uparrow\)
(1.5, 1.9)
\(\uparrow\)
(1.5, 1.6) | No dose adjustment of Epclusa or atorvastatin is required. |
| Rosuvastatin (10 mg single dose) / velpatasvir (100 mg once daily)\(^d\)
(Inhibition of OATP1B and BCRP) | \(\text{Observed:}\) Rosuvastatin
\(\uparrow\)
(2.3, 2.9)
\(\uparrow\)
(2.5, 2.9) | Co-administration of Epclusa with rosuvastatin increases the concentration of rosuvastatin, which is associated with increased risk of myopathy, including rhabdomyolysis. Rosuvastatin, at a dose that does not exceed 10 mg, may be administered with Epclusa. |
| Pravastatin (40 mg single dose) / velpatasvir (100 mg once daily)\(^d\)
(Inhibition of OATP1B) | \(\text{Observed:}\) Pravastatin
\(\uparrow\)
(1.1, 1.5)
\(\uparrow\)
(1.2, 1.5) | No dose adjustment of Epclusa or pravastatin is required. |
| Other statins | \(\text{Expected:}\) ↑ Statins | Interactions cannot be excluded with other HMG-CoA reductase inhibitors. When co-administered with Epclusa, careful monitoring for statin adverse reactions should be undertaken and a reduced dose of statins should be considered if required. |
| **NARCOTIC ANALGESICS** | | |
| Methadone (Methadone maintenance therapy [30 to 130 mg daily]) / sofosbuvir (400 mg once daily)\(^d\) | \(\text{R-methadone}\)
\(\leftrightarrow\)
\(\leftrightarrow\)
\(\leftrightarrow\) | No dose adjustment of Epclusa or methadone is required. |
| Sofosbuvir | \(\leftrightarrow\)
\(\uparrow\)
(1.3, 1.7) | |
| Methadone | Interaction only studied with sofosbuvir
\(\leftrightarrow\) Velpatasvir | |
Medicinal product by therapeutic areas/Possible Mechanism of Interaction

<table>
<thead>
<tr>
<th>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</th>
<th>Effects on medicinal product levels. Mean ratio (90% confidence interval)</th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMMUNOSUPPRESSANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciclosporin (600 mg single dose)/sofosbuvir (400 mg single dose)†</td>
<td>Ciclosporin ↔ ↔</td>
<td>No dose adjustment of Epclusa or ciclosporin is required at initiation of co-administration. Afterwards, close monitoring and potential dose adjustment of ciclosporin may be required.</td>
</tr>
<tr>
<td></td>
<td>Sofosbuvir ↑ ↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 (1.9, 3.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5 (3.3, 6.3)</td>
<td></td>
</tr>
<tr>
<td>Ciclosporin (600 mg single dose)†/velpatasvir (100 mg single dose)†</td>
<td>Ciclosporin ↔ ↓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↓ 0.88 (0.78, 1.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↓ 1.6 (1.2, 2.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↑ 2.0 (1.5, 2.7)</td>
<td></td>
</tr>
<tr>
<td>Tacrolimus (5 mg single dose)/sofosbuvir (400 mg single dose)†</td>
<td>Tacrolimus ↓ ↑</td>
<td>No dose adjustment of Epclusa or tacrolimus is required at initiation of co-administration. Afterwards, close monitoring and potential dose adjustment of tacrolimus may be required.</td>
</tr>
<tr>
<td></td>
<td>↓ 0.73 (0.59, 0.90)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↑ 1.1 (0.84, 1.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↓ 0.97 (0.65, 1.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↑ 1.1 (0.81, 1.6)</td>
<td></td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>Effect on velpatasvir exposure not studied.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↔ Velpatasvir</td>
<td></td>
</tr>
<tr>
<td>ORAL CONTRACEPTIVES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norgestimate/ethinyl estradiol (norgestimate 0.180 mg/ 0.215 mg/ 0.25 mg/ ethinyl estradiol 0.025 mg)/ sofosbuvir (400 mg once daily)†</td>
<td>Norelgestromin ↔ ↔ ↔</td>
<td>No dose adjustment of oral contraceptives is required.</td>
</tr>
<tr>
<td></td>
<td>Norgestrel ↔ ↑ ↑ ↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↑ 1.2 (0.98, 1.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↑ 1.2 (1.0, 1.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethinyl estradiol ↔ ↔ ↔</td>
<td></td>
</tr>
<tr>
<td>Norgestimate/ethinyl estradiol (norgestimate 0.180 mg/ 0.215 mg/ 0.25 mg/ ethinyl estradiol 0.025 mg)/ velpatasvir (100 mg once daily)†</td>
<td>Norelgestromin ↔ ↔ ↔</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norgestrel ↔ ↔ ↔</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethinyl estradiol ↑ ↔ ↔</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↑ 1.4 (1.2, 1.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↔ 0.83 (0.65, 1.1)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **a** Mean ratio (90% CI) of co-administered drug pharmacokinetics of study medicinal products alone or in combination. No effect = 1.00.
- **b** All interaction studies conducted in healthy volunteers.
- **c** Administered as Epclusa.
- **d** Lack of pharmacokinetics interaction bounds 70-143%.
- **e** These are medicinal products within class where similar interactions could be predicted.
- **f** Bioequivalence/Equivalence boundary 80-125%.
- **g** Lack of pharmacokinetics interaction bounds 50-200%.
4.6 Fertility, pregnancy and lactation

Pregnancy

There are no or limited amount of data (less than 300 pregnancy outcomes) from the use of sofosbuvir, velpatasvir or Epclusa in pregnant women.

Sofosbuvir
Animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity (see section 5.3).

It has not been possible to fully estimate exposure margins achieved for sofosbuvir in the rat relative to the exposure in humans at the recommended clinical dose (see section 5.3).

Velpatasvir
Animal studies have shown a possible link to reproductive toxicity (see section 5.3).

As a precautionary measure, Epclusa use is not recommended during pregnancy.

Breast-feeding

It is unknown whether sofosbuvir, metabolites of sofosbuvir or velpatasvir are excreted in human milk.

Available pharmacokinetic data in animals have shown excretion of velpatasvir and metabolites of sofosbuvir in milk.

A risk to the newborns/infants cannot be excluded. Therefore, Epclusa should not be used during breast-feeding.

Fertility

No human data on the effect of Epclusa on fertility are available. Animal studies do not indicate harmful effects of sofosbuvir or velpatasvir on fertility.

If ribavirin is co-administered with Epclusa, refer to the Summary of Product Characteristics for ribavirin for detailed recommendations regarding pregnancy, contraception, and breast-feeding.

4.7 Effects on ability to drive and use machines

Epclusa has no or negligible influence on the ability to drive and use machines.

4.8 Undesirable effects

Summary of the safety profile

The safety profile of Epclusa has been determined in pooled Phase 3 clinical studies of patients with genotype 1, 2, 3, 4, 5 or 6 HCV infection and in the postmarketing setting. No adverse drug reactions to Epclusa were identified from clinical studies. In the postmarketing setting, cases of severe bradycardia and heart block have been observed when SOF-containing products are used in combination with amiodarone, and HBV reactivation has been observed in patients coinfected with HCV/HBV following treatment with DAAs (see section 4.4).
Assessment of adverse reactions for Epclusa is based on safety data from clinical studies and postmarketing experience. All adverse reactions are presented in Table 5. The adverse reactions are listed below by system organ class and frequency. Frequencies are defined as follows: very common ($\geq 1/10$); common ($\geq 1/100$ to $< 1/10$); uncommon ($\geq 1/1000$ to $< 1/100$); rare ($\geq 1/10,000$ to $< 1/1000$) or very rare ($< 1/10,000$).

Table 5: Adverse drug reactions identified with Epclusa

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Adverse drug reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
</tr>
<tr>
<td>Very common</td>
<td>vomiting<sup>a</sup></td>
</tr>
<tr>
<td>Common</td>
<td>rash<sup>b</sup></td>
</tr>
<tr>
<td>Uncommon</td>
<td>angioedema<sup>b</sup></td>
</tr>
</tbody>
</table>

a. Adverse reaction was observed in paediatric patients aged 3 to < 6 years
b. Adverse reaction identified through post-marketing surveillance for sofosbuvir/velpatasvir-containing products

Description of selected adverse reactions

Cardiac arrhythmias
Cases of severe bradycardia and heart block have been observed when sofosbuvir-containing regimens are used in combination with amiodarone and/or other medicinal products that lower heart rate (see sections 4.4 and 4.5).

Skin disorders
Frequency not known: Stevens-Johnson syndrome

Paediatric population

The adverse reactions observed were consistent with those observed in clinical studies of Epclusa in adults. Vomiting was observed as a very common adverse drug reaction to Epclusa in paediatric patients aged 3 to < 6 years. The safety assessment of Epclusa in paediatric patients aged 3 years and older is based on data from a Phase 2, open-label clinical study (study 1143) that enrolled 216 patients who were treated with sofosbuvir/velpatasvir for 12 weeks.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

The highest documented doses of sofosbuvir and velpatasvir were a single dose of 1,200 mg and a single dose of 500 mg, respectively. In these healthy adult volunteer studies, there were no untoward effects observed at these dose levels. The effects of higher doses/exposures are not known.

No specific antidote is available for overdose with Epclusa. If overdose occurs the patient must be monitored for evidence of toxicity. Treatment of overdose with Epclusa consists of general supportive measures including monitoring of vital signs, as well as observation of the clinical status of the patient. Haemodialysis can efficiently remove the predominant circulating metabolite of sofosbuvir, GS-331007, with an extraction ratio of 53%. Haemodialysis is unlikely to result in significant removal of velpatasvir, since velpatasvir is highly bound to plasma protein.
5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antivirals for systemic use; Direct acting antiviral, ATC code: J05AP55

Mechanism of action

Sofosbuvir is a pan-genotypic inhibitor of the HCV NS5B RNA-dependent RNA polymerase, which is essential for viral replication. Sofosbuvir is a nucleotide prodrug that undergoes intracellular metabolism to form the pharmacologically active uridine analogue triphosphate (GS-461203), which can be incorporated into HCV RNA by the NS5B polymerase and acts as a chain terminator. GS-461203 (the active metabolite of sofosbuvir) is neither an inhibitor of human DNA and RNA polymerases nor an inhibitor of mitochondrial RNA polymerase.

Velpatasvir is a HCV inhibitor targeting the HCV NS5A protein, which is essential for both RNA replication and the assembly of HCV virions. In vitro resistance selection and cross-resistance studies indicate velpatasvir targets NS5A as its mode of action.

Antiviral activity

The 50% effective concentration (EC_{50}) values of sofosbuvir and velpatasvir against full-length or chimeric replicons encoding NS5B and NS5A sequences from the laboratory strains are presented in Table 6. The EC_{50} values of sofosbuvir and velpatasvir against clinical isolates are presented in Table 7.

Table 6: Activity of sofosbuvir and velpatasvir against full-length or chimeric laboratory replicons

<table>
<thead>
<tr>
<th>Replicon genotype</th>
<th>Sofosbuvir EC_{50}, nM</th>
<th>Velpatasvir EC_{50}, nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>40</td>
<td>0.014</td>
</tr>
<tr>
<td>1b</td>
<td>110</td>
<td>0.016</td>
</tr>
<tr>
<td>2a</td>
<td>50</td>
<td>0.005-0.016(^c)</td>
</tr>
<tr>
<td>2b</td>
<td>15(^b)</td>
<td>0.002-0.006(^c)</td>
</tr>
<tr>
<td>3a</td>
<td>50</td>
<td>0.004</td>
</tr>
<tr>
<td>4a</td>
<td>40</td>
<td>0.009</td>
</tr>
<tr>
<td>4d</td>
<td>NA</td>
<td>0.004</td>
</tr>
<tr>
<td>5a</td>
<td>15(^b)</td>
<td>0.021-0.054(^d)</td>
</tr>
<tr>
<td>6a</td>
<td>14(^b)</td>
<td>0.006-0.009</td>
</tr>
<tr>
<td>6e</td>
<td>NA</td>
<td>0.130(^d)</td>
</tr>
</tbody>
</table>

NA = Not available

a Mean value from multiple experiments of same laboratory replicon.
b Stable chimeric 1b replicons carrying NS5B genes from genotype 2b, 5a or 6a were used for testing.
c Data from various strains of full length NS5A replicons or chimeric NS5A replicons carrying full-length NS5A genes that contain L31 or M31 polymorphisms.
d Data from a chimeric NS5A replicon carrying NS5A amino acids 9-184.
Table 7: Activity of sofosbuvir and velpatasvir against transient replicons containing NS5A or NS5B from clinical isolates

<table>
<thead>
<tr>
<th>Replicon genotype</th>
<th>Replicons containing NS5B from clinical isolates</th>
<th>Replicons containing NS5A from clinical isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of clinical isolates</td>
<td>Median sofosbuvir EC₅₀, nM (range)</td>
</tr>
<tr>
<td>1a</td>
<td>67</td>
<td>62 (29-128)</td>
</tr>
<tr>
<td>1b</td>
<td>29</td>
<td>102 (45-170)</td>
</tr>
<tr>
<td>2a</td>
<td>15</td>
<td>29 (14-81)</td>
</tr>
<tr>
<td>2b</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3a</td>
<td>106</td>
<td>81 (24-181)</td>
</tr>
<tr>
<td>4a</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4d</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5a</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6a</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6c</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NA = Not available

The presence of 40% human serum had no effect on the anti-HCV activity of sofosbuvir but reduced the anti-HCV activity of velpatasvir by 13-fold against genotype 1a HCV replicons.

Evaluation of sofosbuvir in combination with velpatasvir showed no antagonistic effect in reducing HCV RNA levels in replicon cells.

Resistance

In cell culture

HCV replicons with reduced susceptibility to sofosbuvir have been selected in cell culture for multiple genotypes including 1b, 2a, 2b, 3a, 4a, 5a and 6a. Reduced susceptibility to sofosbuvir was associated with the primary NS5B substitution S282T in all replicon genotypes examined. Site-directed mutagenesis of the S282T substitution in replicons of genotype 1 to 6 conferred 2- to 18-fold reduced susceptibility to sofosbuvir and reduced the replication viral capacity by 89% to 99% compared to the corresponding wild-type. In biochemical assays, the ability of the active triphosphate of sofosbuvir (GS-461203) to inhibit recombinant NS5B polymerase from genotypes 1b, 2a, 3a and 4a expressing the S282T substitution was reduced compared to its ability to inhibit wild-type recombinant NS5B polymerase, as indicated by a 8.5- to 24-fold increase in the 50% inhibitory concentration (IC₅₀).

In vitro selection of HCV replicons with reduced susceptibility to velpatasvir was performed in cell culture for multiple genotypes including 1a, 1b, 2a, 3a, 4a, 5a and 6a. Variants were selected at NS5A resistance associated positions 24, 28, 30, 31, 32, 58, 92 and 93. The resistance associated variants (RAVs) selected in 2 or more genotypes were F28S, L31V/V and Y93H. Site-directed mutagenesis of known NS5A RAVs showed that substitutions conferring a > 100-fold reduction in velpatasvir susceptibility are M28G, A92K and Y93H/N/R/W in genotype 1a, A92K in genotype 1b, C92T and Y93H/N in genotype 2b, Y93H in genotype 3, and L31V and P32A/L/Q/R in genotype 6. No individual substitutions tested in genotypes 2a, 4a, or 5a conferred a > 100-fold reduction in velpatasvir susceptibility. Combinations of these variants often showed greater reductions in susceptibility to velpatasvir than single RAVs alone.

In clinical studies

Studies in patients without cirrhosis and patients with compensated cirrhosis

In a pooled analysis of patients without cirrhosis or with compensated cirrhosis who received Epclusa for 12 weeks in three Phase 3 studies, 12 patients (2 with genotype 1 and 10 with genotype 3) qualified for resistance analysis due to virologic failure. One additional patient with genotype 3 HCV infection at baseline was reinfected with genotype 1a HCV at virologic failure and was excluded from the virological analysis. No patients with genotype 2, 4, 5, or 6 HCV infection experienced virologic failure.
Of the 2 genotype 1 virologic failure patients, one patient had virus with emergent NS5A RAV Y93N and the other patient had virus with emergent NS5A RAVs L31I/V and Y93H at virologic failure. Both patients had virus at baseline harbouring NS5A RAVs. No NS5B nucleoside inhibitor (NI) RAVs were observed at failure in the 2 patients.

Of the 10 genotype 3 virologic failure patients, Y93H was observed in all 10 patients at failure (6 had Y93H emerge post-treatment and 4 patients had Y93H at baseline and post-treatment). No NS5B NI RAVs were observed at failure in the 10 patients.

Studies in patients with decompensated cirrhosis
In one Phase 3 study in patients with decompensated cirrhosis who received Epclusa + RBV for 12 weeks, 3 patients (1 with genotype 1 and 2 with genotype 3) qualified for resistance analysis due to virologic failure. No patients with genotype 2 or 4 HCV infection in the Epclusa + RBV 12 weeks group experienced virologic failure.

The 1 virologic failure patient with genotype 1 HCV had no NS5A or NS5B RAVs at failure.

Of the 2 genotype 3 virologic failure patients, one had NS5A RAV Y93H emerge at failure. Another patient had virus with Y93H at baseline and virologic failure and also developed low levels (< 5%) of NS5B NI RAVs N142T and E237G at failure. Pharmacokinetic data from this patient was consistent with non-adherence to treatment.

In this study, 2 patients treated with Epclusa for 12 or 24 weeks without ribavirin had emergent NS5B S282T at low levels (< 5%) along with L159F.

Effect of baseline HCV resistance-associated variants on treatment outcome

Studies in patients without cirrhosis and patients with compensated cirrhosis
Analyses were conducted to explore the association between pre-existing baseline NS5A RAVs and treatment outcome for patients without cirrhosis or with compensated cirrhosis in three Phase 3 clinical studies (ASTRAL-1, ASTRAL-2 and ASTRAL-3). Of the 1,035 patients treated with sofosbuvir/velpatasvir in the three Phase 3 clinical studies, 1,023 patients were included in the analysis of NS5A RAVs; 7 patients were excluded as they neither achieved sustained virologic response (SVR12) nor had virologic failure and 5 additional patients were excluded as NS5A gene sequencing failed. In the pooled analysis of the Phase 3 studies, 380/1,023 (37%) patients’ virus had baseline NS5A RAVs. Genotype 2, 4, and 6 HCV-infected patients had a higher prevalence of NS5A RAVs (70%, 63% and 52%, respectively) compared to genotype 1 (23%), genotype 3 (16%), and genotype 5 (18%) HCV-infected patients.

Baseline RAVs had no relevant impact on SVR12 rates in patients infected with genotype 1, 2, 4, 5 and 6 HCV, as summarised in Table 8. Genotype 3 infected patients with the NS5A RAV Y93H at baseline had a lower SVR12 rate than patients without Y93H after treatment with Epclusa for 12 weeks, as summarised in Table 9. In the ASTRAL-3 study, the Y93H RAV was detected at baseline in 9% of patients treated with Epclusa.

Table 8: SVR12 in patients with or without baseline NS5A RAVs by HCV genotype (studies ASTRAL-1, ASTRAL-2 and ASTRAL-3)

<table>
<thead>
<tr>
<th></th>
<th>Epclusa 12 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype 1</td>
<td>97% (73/75)</td>
</tr>
<tr>
<td>Genotype 3</td>
<td>88% (38/43)</td>
</tr>
<tr>
<td>Genotypes 2, 4, 5 or 6</td>
<td>100% (262/262)</td>
</tr>
<tr>
<td>Total</td>
<td>98% (373/380)</td>
</tr>
<tr>
<td>With any baseline NS5A RAVs</td>
<td>100% (251/251)</td>
</tr>
<tr>
<td>Without baseline NS5A RAVs</td>
<td>97% (225/231)</td>
</tr>
<tr>
<td></td>
<td>100% (161/161)</td>
</tr>
<tr>
<td>Total</td>
<td>99% (637/643)</td>
</tr>
</tbody>
</table>
Table 9: SVR12 in patients with and without baseline Y93H, 1% Cut-off (Resistance Analysis Population Set) ASTRAL 3

<table>
<thead>
<tr>
<th></th>
<th>Overall (n = 274)</th>
<th>Cirrhotic (n = 80)</th>
<th>Non-Cirrhotic (n = 197)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Subjects</td>
<td>95.3% (263/274)</td>
<td>91.3% (73/80)</td>
<td>97.9% (190/194)</td>
</tr>
<tr>
<td>95% CI</td>
<td>92.9% to 98.0%</td>
<td>82.8% to 96.4%</td>
<td>92.8% to 98.6%</td>
</tr>
<tr>
<td>SVR with Y93H</td>
<td>84.0% (21/25)</td>
<td>50.0% (2/4)</td>
<td>90.5% (19/21)</td>
</tr>
<tr>
<td>95% CI</td>
<td>63.9% to 95.5%</td>
<td>6.8% to 93.2%</td>
<td>69.6% to 98.8%</td>
</tr>
<tr>
<td>SVR without Y93H</td>
<td>96.4% (242/249)</td>
<td>93.4% (71/76)</td>
<td>98.8% (171/173)</td>
</tr>
<tr>
<td>95% CI</td>
<td>94.3% to 98.9%</td>
<td>85.3% to 97.8%</td>
<td>95.9% to 99.9%</td>
</tr>
</tbody>
</table>

The NS5B NI RAV S282T was not detected in the baseline NS5B sequence of any patient in Phase 3 studies. SVR12 was achieved in all 77 patients who had baseline NS5B NI RAVs including N142T, L159F, E/N237G, C/M289L/I, L320F/I/V, V321A/I, and S282G+V321I.

Studies in patients with decompensated cirrhosis (CPT Class B)
Analyses were conducted to explore the association between pre-existing baseline NS5A RAVs and treatment outcome for patients with decompensated cirrhosis in one Phase 3 study (ASTRAL-4). Of the 87 patients treated with Epclusa + RBV, 85 patients were included in the analysis of NS5A RAVs; 2 patients were excluded as they neither achieved SVR12 nor had virologic failure. Among the patients who received treatment with Epclusa + RBV for 12 weeks, 29% (25/85) of patients had baseline virus with NS5A RAVs: 29% (19/66), 75% (3/4), 15% (2/13), and 50% (1/2) for patients with genotype 1, 2, 3 and 4 HCV, respectively.

SVR12 in patients with or without baseline NS5A RAVs in the Epclusa + RBV 12 week group for this study is shown in Table 10.

Table 10: SVR12 in patients with or without baseline NS5A RAVs by HCV genotype (study ASTRAL-4)

<table>
<thead>
<tr>
<th></th>
<th>Genotype 1</th>
<th>Genotype 3</th>
<th>Genotypes 2 or 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>With any baseline NS5A RAVs</td>
<td>100% (19/19)</td>
<td>50% (1/2)</td>
<td>100% (4/4)</td>
<td>96% (24/25)</td>
</tr>
<tr>
<td>Without baseline NS5A RAVs</td>
<td>98% (46/47)</td>
<td>91% (10/11)</td>
<td>100% (2/2)</td>
<td>98% (58/60)</td>
</tr>
</tbody>
</table>

The single genotype 3 patient who had baseline NS5A RAVs and failed to achieve SVR12 had NS5A substitution Y93H at baseline; pharmacokinetic data from this patient was consistent with non-adherence to treatment.

Three patients in the Epclusa + RBV 12 week group had baseline NS5B NI RAVs (N142T and L159F) and all three patients achieved SVR12.

Paediatric population
The presence of NS5A and NS5B RAVs did not impact treatment outcome; all patients with baseline NS5A (n=29) or NS5B NI (n=6) RAVs achieved SVR following 12 weeks treatment with Epclusa.

Cross-resistance
In vitro data suggests that the majority of NS5A RAVs that confer resistance to ledipasvir and daclatasvir remained susceptible to velpatasvir. Velpatasvir was fully active against the sofosbuvir resistance-associated substitution S282T in NS5B while all velpatasvir resistance-associated substitutions in NS5A were fully susceptible to sofosbuvir. Both sofosbuvir and velpatasvir were fully active against substitutions associated with resistance to other classes of direct-acting antivirals with different mechanisms of actions, such as NS5B non-nucleoside inhibitors and NS3 protease inhibitors.
The efficacy of Epclusa has not been assessed in patients who have previously failed treatment with other regimens that include an NS5A inhibitor.

Clinical efficacy and safety

The efficacy of Epclusa was evaluated in three Phase 3 studies in patients with genotype 1 to 6 HCV infection with or without compensated cirrhosis, one Phase 3 study in patients with genotype 1 to 6 HCV infection with decompensated cirrhosis, one Phase 3 study in HCV/HIV-1 co-infected patients with genotype 1 to 6 HCV infection and one Phase 2 study in patients with HCV infection and ESRD requiring dialysis, as summarised in Table 11.

Table 11: Studies conducted with Epclusa in patients with genotype 1, 2, 3, 4, 5 or 6 HCV infection

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Study arms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Number of patients treated)</td>
</tr>
<tr>
<td>ASTRAL-1</td>
<td>Genotype 1, 2, 4, 5 and 6 TN and TE, without cirrhosis or with compensated</td>
<td>Epclusa 12 weeks (624)</td>
</tr>
<tr>
<td></td>
<td>cirrhosis</td>
<td>Placebo 12 weeks (116)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTRAL-2</td>
<td>Genotype 2</td>
<td>Epclusa 12 weeks (134)</td>
</tr>
<tr>
<td></td>
<td>TN and TE, without cirrhosis or with compensated</td>
<td>SOF+RBV 12 weeks (132)</td>
</tr>
<tr>
<td></td>
<td>cirrhosis</td>
<td></td>
</tr>
<tr>
<td>ASTRAL-3</td>
<td>Genotype 3</td>
<td>Epclusa 12 weeks (277)</td>
</tr>
<tr>
<td></td>
<td>TN and TE, without cirrhosis or with compensated</td>
<td>SOF+RBV 24 weeks (275)</td>
</tr>
<tr>
<td></td>
<td>cirrhosis</td>
<td></td>
</tr>
<tr>
<td>ASTRAL-4</td>
<td>Genotype 1, 2, 3, 4, 5 and 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN and TE, with CPT Class B decompensated cirrhosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epclusa 12 weeks (90)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epclusa + RBV 12 weeks (87)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epclusa 24 weeks (90)</td>
</tr>
<tr>
<td>ASTRAL-5</td>
<td>Genotype 1, 2, 3, 4, 5 and 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN and TE, without cirrhosis or with compensated</td>
<td>Epclusa 12 weeks (106)</td>
</tr>
<tr>
<td></td>
<td>cirrhosis, with HCV/HIV-1 co-infection</td>
<td></td>
</tr>
<tr>
<td>GS-US-342-4062</td>
<td>TN and TE with or without cirrhosis, with ESRD</td>
<td>Epclusa 12 weeks (59)</td>
</tr>
<tr>
<td></td>
<td>requiring dialysis</td>
<td></td>
</tr>
</tbody>
</table>

TN = treatment-naïve patients; TE = treatment-experienced patients (including those who have failed a peginterferon alfa + ribavirin based regimen with or without an HCV protease inhibitor)

The ribavirin dose was weight-based (1,000 mg daily administered in two divided doses for patients < 75 kg and 1,200 mg for those ≥ 75 kg) and administered in two divided doses when used in combination with sofosbuvir in the ASTRAL-2 and ASTRAL-3 studies or in combination with Epclusa in the ASTRAL-4 study. Ribavirin dose adjustments were performed according to the ribavirin prescribing information. Serum HCV RNA values were measured during the clinical studies using the COBAS AmpliPrep/COBAS Taqman HCV test (version 2.0) with a lower limit of quantification (LLOQ) of 15 IU/mL. Sustained virologic response (SVR12), defined as HCV RNA less than LLOQ at 12 weeks after the cessation of treatment, was the primary endpoint to determine the HCV cure rate.

Clinical studies in patients without cirrhosis and patients with compensated cirrhosis

Genotype 1, 2, 4, 5 and 6 HCV-infected adults – ASTRAL-1 (study 1138)

ASTRAL-1 was a randomised, double-blind, placebo-controlled study that evaluated 12 weeks of treatment with Epclusa compared with 12 weeks of placebo in patients with genotype 1, 2, 4, 5, or 6 HCV infection. Patients with genotype 1, 2, 4 or 6 HCV infection were randomised in a 5:1 ratio to treatment with Epclusa for 12 weeks or placebo for 12 weeks. Patients with genotype 5 HCV infection were enrolled to the Epclusa group. Randomisation was stratified by HCV genotype (1, 2, 4, 6, and indeterminate) and the presence or absence of cirrhosis.

Demographics and baseline characteristics were balanced between the Epclusa and placebo group. Of the 740 treated patients, the median age was 56 years (range: 18 to 82); 60% of the patients were male; 79% were White, 9% were Black; 21% had a baseline body mass index of at least 30 kg/m²; the proportions of patients with genotype 1, 2, 4, 5, or 6 HCV infection were 53%, 17%, 19%, 5% and
7%, respectively; 69% had non-CC IL28B alleles (CT or TT); 74% had baseline HCV RNA levels of at least 800,000 IU/mL; 19% had compensated cirrhosis; and 32% were treatment-experienced.

Table 12 presents the SVR12 for the ASTRAL-1 study by HCV genotypes. No patients in the placebo group achieved SVR12.

Table 12: SVR12 in study ASTRAL-1 by HCV genotype

<table>
<thead>
<tr>
<th>Epclusa 12 weeks (n = 624)</th>
<th>GT-1 (n = 328)</th>
<th>GT-2 (n = 104)</th>
<th>GT-4 (n = 116)</th>
<th>GT-5 (n = 35)</th>
<th>GT-6 (n = 41)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (all GTs) (n = 624)</td>
<td>99% (618/624)</td>
<td>98% (206/210)</td>
<td>99% (117/118)</td>
<td>98% (323/328)</td>
<td>100% (104/104)</td>
</tr>
<tr>
<td>SVR12</td>
<td>99% (618/624)</td>
<td>98% (206/210)</td>
<td>99% (117/118)</td>
<td>98% (323/328)</td>
<td>100% (104/104)</td>
</tr>
</tbody>
</table>

Outcome for patients without SVR12

<table>
<thead>
<tr>
<th>On-treatment virologic failure</th>
<th>0/624</th>
<th>0/210</th>
<th>0/118</th>
<th>0/328</th>
<th>0/104</th>
<th>0/116</th>
<th>0/35</th>
<th>0/41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relapsa<sup>a</sup></td>
<td>< 1%</td>
<td>< 1%</td>
<td>1%</td>
<td>1%</td>
<td>0/104</td>
<td>0/116</td>
<td>0/35</td>
<td>0/41</td>
</tr>
<tr>
<td>Other<sup>b</sup></td>
<td>1%</td>
<td>1%</td>
<td>0/118</td>
<td>1%</td>
<td>0/104</td>
<td>0/116</td>
<td>3%</td>
<td>0/41</td>
</tr>
</tbody>
</table>

GT = genotype
^a The denominator for relapse is the number of patients with HCV RNA < LLOQ at their last on-treatment assessment.
^b Other includes patients who did not achieve SVR12 and did not meet virologic failure criteria.

Genotype 2 HCV-infected adults – ASTRAL-2 (study 1139)

ASTRAL-2 was a randomised, open-label study that evaluated 12 weeks of treatment with Epclusa compared with 12 weeks of treatment with SOF+RBV in patients with genotype 2 HCV infection. Patients were randomised in a 1:1 ratio to treatment with Epclusa for 12 weeks or SOF+RBV for 12 weeks. Randomisation was stratified by the presence or absence of cirrhosis and prior treatment experience (treatment-naïve versus treatment-experienced).

Demographics and baseline characteristics were balanced across the two treatment groups. Of the 266 treated patients, the median age was 58 years (range: 23 to 81); 59% of the patients were male; 88% were White, 7% were Black; 33% had a baseline body mass index of at least 30 kg/m²; 62% had non-CC IL28B alleles (CT or TT); 80% had baseline HCV RNA levels of at least 800,000 IU/mL; 14% had compensated cirrhosis and 15% were treatment-experienced.

Table 13 presents the SVR12 for the ASTRAL-2 study.

Table 13: SVR12 in study ASTRAL-2 (HCV genotype 2)

<table>
<thead>
<tr>
<th></th>
<th>Epclusa 12 weeks (n = 134)</th>
<th>SOF+RBV 12 weeks (n = 132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVR12</td>
<td>99% (133/134)</td>
<td>94% (124/132)</td>
</tr>
</tbody>
</table>

Outcome for patients without SVR12

| On-treatment virologic failure | 0/134 | 0/132 |^a The denominator for relapse is the number of patients with HCV RNA < LLOQ at their last on-treatment assessment.
| Relapse^a | 0/133 | 5% (6/132) |
| Other^b | 1% (1/134) | 2% (2/132) |

^b Other includes patients who did not achieve SVR12 and did not meet virologic failure criteria.

Treatment with Epclusa for 12 weeks demonstrated the statistical superiority (p = 0.018) over treatment with SOF+RBV for 12 weeks (treatment difference +5.2%; 95% confidence interval: +0.2% to +10.3%).
Genotype 3 HCV-infected adults – ASTRAL-3 (study 1140)

ASTRAL-3 was a randomised, open-label study that evaluated 12 weeks of treatment with Epclusa compared with 24 weeks of treatment with SOF+RBV in patients with genotype 3 HCV infection. Patients were randomised in a 1:1 ratio to treatment with Epclusa for 12 weeks or SOF+RBV for 24 weeks. Randomisation was stratified by the presence or absence of cirrhosis and prior treatment experience (treatment-naïve versus treatment-experienced).

Demographics and baseline characteristics were balanced across the two treatment groups. Of the 552 treated patients, the median age was 52 years (range: 19 to 76); 62% of the patients were male; 89% were White, 9% were Asian; 1% were Black; 20% had a baseline body mass index of at least 30 kg/m²; 61% had non-CC IL28B alleles (CT or TT); 70% had baseline HCV RNA levels of at least 800,000 IU/mL, 30% had compensated cirrhosis and 26% were treatment-experienced.

Table 14 presents the SVR12 for the ASTRAL-3 study.

Table 14: SVR12 in study ASTRAL-3 (HCV genotype 3)

<table>
<thead>
<tr>
<th></th>
<th>Epclusa 12 weeks (n = 277)</th>
<th>SOF+RBV 24 weeks (n = 275)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVR12</td>
<td>95% (264/277)</td>
<td>80% (221/275)</td>
</tr>
<tr>
<td>Outcome for patients without SVR12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-treatment virologic failure</td>
<td>0/277</td>
<td>< 1% (1/275)</td>
</tr>
<tr>
<td>Relapse<sup>a</sup></td>
<td>4% (11/276)</td>
<td>14% (38/272)</td>
</tr>
<tr>
<td>Other<sup>b</sup></td>
<td>1% (2/277)</td>
<td>5% (15/275)</td>
</tr>
</tbody>
</table>

^a The denominator for relapse is the number of patients with HCV RNA < LLOQ at their last on-treatment assessment.

^b Other includes patients who did not achieve SVR12 and did not meet virologic failure criteria.

Treatment with Epclusa for 12 weeks demonstrated the statistical superiority (p < 0.001) compared to treatment with SOF+RBV for 24 weeks (treatment difference +14.8%; 95% confidence interval: +9.6% to +20.0%).

SVR12 for selected subgroups are presented in Table 15.

Table 15: SVR12 for selected subgroups in study ASTRAL-3 (HCV genotype 3)

<table>
<thead>
<tr>
<th></th>
<th>Epclusa 12 weeks</th>
<th>SOF+RBV 24 weeks<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>SVR12</td>
<td>Treatment-naïve</td>
<td>Treatment-naïve</td>
</tr>
<tr>
<td></td>
<td>(n = 206)</td>
<td>(n = 201)</td>
</tr>
<tr>
<td>Without cirrhosis</td>
<td>98% (160/163)</td>
<td>90% (141/156)</td>
</tr>
<tr>
<td>With cirrhosis</td>
<td>93% (40/43)</td>
<td>73% (33/45)</td>
</tr>
</tbody>
</table>

^a Five patients with missing cirrhosis status in the SOF+RBV 24 week group were excluded from this subgroup analysis.

Clinical studies in patients with decompensated cirrhosis – ASTRAL-4 (study 1137)

ASTRAL-4 was a randomised, open-label study in patients with genotype 1, 2, 3, 4, 5 or 6 HCV infection and CPT Class B cirrhosis. Patients were randomised in a 1:1:1 ratio to treatment with Epclusa for 12 weeks, Epclusa + RBV for 12 weeks or Epclusa for 24 weeks. Randomisation was stratified by HCV genotype (1, 2, 3, 4, 5, 6 and indeterminate).

Demographics and baseline characteristics were balanced across the treatment groups. Of the 267 treated patients, the median age was 59 years (range: 40 to 73); 70% of the patients were male; 90% were White, 6% were Black; 42% had a baseline body mass index of at least 30 kg/m². The proportions of patients with genotype 1, 2, 3, 4 or 6 HCV were 78%, 4%, 15%, 3%, and < 1% (1 patient), respectively. No patients with genotype 5 HCV infection were enrolled. 76% of the patients had non-CC IL28B alleles (CT or TT); 56% had baseline HCV RNA levels of at least 800,000 IU/mL, 55% were treatment-experienced; 90% and 95% of patients had CPT Class B cirrhosis and Model for End Stage Liver Disease (MELD) score ≤ 15 at baseline, respectively.
Table 16 presents the SVR12 for the ASTRAL-4 study by HCV genotype.

Table 16: SVR12 in study ASTRAL-4 by HCV genotype

<table>
<thead>
<tr>
<th></th>
<th>Epclusa 12 weeks (n = 90)</th>
<th>Epclusa + RBV 12 weeks (n = 87)</th>
<th>Epclusa 24 weeks (n = 90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall SVR12</td>
<td>83% (75/90)</td>
<td>94% (82/87)</td>
<td>86% (77/90)</td>
</tr>
<tr>
<td>Genotype 1</td>
<td>88% (60/68)</td>
<td>96% (65/68)</td>
<td>92% (65/71)</td>
</tr>
<tr>
<td>Genotype 1a</td>
<td>88% (44/50)</td>
<td>94% (51/54)</td>
<td>93% (51/55)</td>
</tr>
<tr>
<td>Genotype 1b</td>
<td>89% (16/18)</td>
<td>100% (14/14)</td>
<td>88% (14/16)</td>
</tr>
<tr>
<td>Genotype 3</td>
<td>50% (7/14)</td>
<td>85% (11/13)</td>
<td>50% (6/12)</td>
</tr>
<tr>
<td>Genotype 2, 4 and 6</td>
<td>100% (8/8)</td>
<td>100% (6/6)</td>
<td>100% (6/6)</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a n = 4 for genotype 2 and n = 4 for genotype 4.</td>
<td>b n = 4 for genotype 2 and n = 2 for genotype 4.</td>
<td>c n = 4 for genotype 2, n = 2 for genotype 4 and n = 1 for genotype 6.</td>
</tr>
</tbody>
</table>

Table 17 presents the virologic outcome for patients with genotype 1 or 3 HCV infection in the ASTRAL-4 study.

No patients with genotype 2, 4 or 6 HCV infection experienced virologic failure.

Table 17: Virologic outcome for patients with genotype 1 and 3 HCV infection in study ASTRAL-4

<table>
<thead>
<tr>
<th></th>
<th>Epclusa 12 weeks (n = 236)</th>
<th>Epclusa + RBV 12 weeks (n = 239)</th>
<th>Epclusa 24 weeks (n = 239)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virologic failure (relapse and on-treatment failure)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotype 1a</td>
<td>7% (5/68)</td>
<td>1% (1/68)</td>
<td>4% (3/71)</td>
</tr>
<tr>
<td>Genotype 1a</td>
<td>6% (3/50)</td>
<td>2% (1/54)</td>
<td>4% (2/55)</td>
</tr>
<tr>
<td>Genotype 1b</td>
<td>11% (2/18)</td>
<td>0% (0/14)</td>
<td>6% (1/16)</td>
</tr>
<tr>
<td>Genotype 3</td>
<td>43% (6/14)</td>
<td>15% (2/13)</td>
<td>42% (5/12)</td>
</tr>
<tr>
<td>Other</td>
<td>5% (4/82)</td>
<td>2% (2/81)</td>
<td>5% (4/83)</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a No patients with genotype 1 HCV had on-treatment virologic failure.</td>
<td>b One patient had on-treatment virologic failure; pharmacokinetic data from this patient was consistent with non-adherence to treatment.</td>
<td>c One patient had on-treatment virologic failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d Other includes patients who did not achieve SVR12 and did not meet virologic failure criteria.</td>
</tr>
</tbody>
</table>

Changes in the parameters found in the CPT score system in patients achieving SVR12 in ASTRAL-4 (all 3 regimens) are shown in Table 18.

Table 18: Changes in CPT score parameters from baseline to week 12 and 24 post-treatment in patients achieving SVR12, ASTRAL-4

<table>
<thead>
<tr>
<th>Post-treatment Week 12 (N = 236), % (n/N)</th>
<th>Albumin</th>
<th>Bilirubin</th>
<th>INR</th>
<th>Ascites</th>
<th>Encephalopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased score (Improvement)</td>
<td>34.5% (79/229)</td>
<td>17.9% (41/229)</td>
<td>2.2% (5/229)</td>
<td>7.9% (18/229)</td>
<td>5.2% (12/229)</td>
</tr>
<tr>
<td>No change</td>
<td>60.3% (138/229)</td>
<td>76.4% (175/229)</td>
<td>96.5% (221/229)</td>
<td>89.1% (204/229)</td>
<td>91.3% (209/229)</td>
</tr>
<tr>
<td>Increased score (Worsening)</td>
<td>5.2% (12/229)</td>
<td>5.7% (13/229)</td>
<td>1.3% (3/229)</td>
<td>3.1% (7/229)</td>
<td>3.5% (8/229)</td>
</tr>
<tr>
<td>No assessment</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

24
Clinical studies in patients with HCV/HIV-1 Co-infection – ASTRAL-5 (study 1202)
ASTRAL-5 evaluated 12 weeks of treatment with Epclusa in patients with genotype 1, 2, 3, or 4 HCV infection who were co-infected with HIV-1 (HCV genotype 5 and 6 allowed, but no such patients were included). Patients were on a stable HIV-1 antiretroviral therapy that included emtricitabine/tenofovir disoproxil fumarate and boosted protease inhibitor (atazanavir, darunavir, or lopinavir), rilpivirine, raltegravir or emtricitabine/tenofovir disoproxil fumarate administered with a ritonavir boosted protease inhibitor (atazanavir, darunavir, or lopinavir), rilpivirine, raltegravir or emtricitabine/tenofovir disoproxil fumarate/elvitegravir/cobicistat.

Of the 106 treated patients, the median age was 57 years (range: 25 to 72); 86% of the patients were male; 51% were White; 45% were Black; 22% had a baseline body mass index ≥ 30 kg/m²; 19 patients (18%) had compensated cirrhosis; and 29% were treatment experienced. The overall mean CD4+ count was 598 cells/µL (range: 0 to 40 years). The overall SVR rate was 95% (56/59); of the three patients that did not achieve SVR, 2% had treatment failure and 2% had relapse. The remaining patient did not achieve SVR and did not meet virologic failure criteria. SVR12 was achieved by 19/19 patients with cirrhosis. No patient had HIV-1 rebound during the study, and CD4+ counts were stable during treatment.

Clinical studies in patients with Renal Impairment – study 4062
Study 4062 was an open-label clinical study that evaluated 12 weeks of treatment with Epclusa in 59 HCV-infected patients with ESRD requiring dialysis. The proportions of patients with genotype 1, 2, 3, 4, 6 or indeterminate HCV infection were 42%, 12%, 27%, 7%, 3%, and 9%, respectively. At baseline, 29% of patients had cirrhosis, 22% were treatment experienced, 32% had received a kidney transplant, 92% were on haemodialysis, and 8% were on peritoneal dialysis; mean duration on dialysis was 7.3 years (range: 0 to 40 years). The overall SVR rate was 95% (56/59); of the three patients that did not achieve SVR, 3% had treatment failure and 2% had relapse. The remaining patients did not achieve SVR and did not meet virologic failure criteria.
did not achieve SVR12, one had completed Epclusa treatment and relapsed and two did not meet virologic failure criteria.

Paediatric population
The efficacy of 12 weeks of treatment with sofosbuvir/velpatasvir in HCV-infected paediatric patients aged 3 years and older was evaluated in a Phase 2, open-label clinical study in 214 patients with HCV infection.

Patients aged 12 to < 18 Years:
Sofosbuvir/velpatasvir was evaluated in 102 patients aged 12 to <18 years with genotype 1, 2, 3, 4, or 6 HCV infection. A total of 80 patients (78%) were treatment-naïve and 22 patients (22%) were treatment-experienced. The median age was 15 years (range: 12 to 17); 51% of the patients were female; 73% were White, 9% were Black, and 11% were Asian; 14% were Hispanic/Latino; mean body mass index was 22.7 kg/m² (range: 12.9 to 48.9 kg/m²); mean weight was 61 kg (range 22 to 147 kg); 58% had baseline HCV RNA levels greater than or equal to 800,000 IU/mL; the proportions of subjects with genotype 1, 2, 3, 4, or 6 HCV infection were 74%, 6%, 12%, 2%, and 6%, respectively; no patients had known cirrhosis. The majority of patients (89%) had been infected through vertical transmission.

The SVR rate was 95% overall (97/102), 93% (71/76) in patients with genotype 1 HCV infection, and 100% in patients with genotype 2 (6/6), genotype 3 (12/12), genotype 4 (2/2), and genotype 6 (6/6) HCV infection. One patient who discontinued treatment early relapsed; the other four patients who did not achieve SVR12 did not meet virologic failure criteria (e.g., lost to follow-up).

Patients aged 6 to < 12 Years:
Sofosbuvir/velpatasvir was evaluated in 71 patients aged 6 to <12 years with genotype 1, 2, 3, and 4 HCV infection. A total of 67 patients (94%) were treatment-naïve and 4 patients (6%) were treatment-experienced. The median age was 8 years (range: 6 to 11); 54% of the patients were female; 90% were White, 6% were Black, and 1% were Asian; 10% were Hispanic/Latino; mean body mass index was 17.4 kg/m² (range: 12.8 to 30.9 kg/m²); mean weight was 30 kg (range 18 to 78 kg); 48% had baseline HCV RNA levels greater than or equal to 800,000 IU per mL; the proportions of patients with genotype 1, 2, 3, or 4 HCV infection were 76%, 3%, 15%, and 6%, respectively; no patients had known cirrhosis. The majority of patients (94%) had been infected through vertical transmission.

The SVR rate was 93% overall (66/71), 93% (50/54) in patients with genotype 1 HCV infection, 91% (10/11) in patients with genotype 3 HCV infection, and 100% in patients with genotype 2 (2/2) and genotype 4 (4/4) HCV infection. One subject had on-treatment virologic failure; the other four patients who did not achieve SVR12 did not meet virologic failure criteria (e.g., lost to follow-up).

Patients aged 3 to < 6 Years:
Sofosbuvir/velpatasvir was evaluated in 41 treatment-naïve subjects 3 years to < 6 years of age with genotype 1, 2, 3, and 4 HCV infection. The median age was 4 years (range: 3 to 5); 59% of the subjects were female; 78% were White and 7% were Black; 10% were Hispanic/Latino; mean body mass index was 17.0 kg/m² (range: 13.9 to 22.0 kg/m²); mean weight was 19 kg (range: 13 to 35 kg); 49% had baseline HCV RNA levels ≥ 800,000 IU per mL; the proportions of subjects with genotype 1, 2, 3, or 4 HCV infection were 78%, 15%, 5%, and 2%, respectively; no subjects had known cirrhosis. The majority of subjects (98%) had been infected through vertical transmission.

The SVR rate was 83% overall (34/41), 88% (28/32) in subjects with genotype 1 HCV infection, 50% (3/6) in subjects with genotype 2 HCV infection, and 100% in subjects with genotype 3 (2/2) and genotype 4 (1/1) HCV infection. No subject experienced on-treatment virologic failure or relapse. The seven subjects who did not achieve SVR12 did not meet virologic failure criteria (e.g., lost to follow-up).
Elderly
Clinical studies of Epclusa included 156 patients aged 65 and over (12% of total number of patients in the Phase 3 clinical studies). The response rates observed for patients ≥ 65 years of age were similar to that of patients < 65 years of age, across treatment groups.

5.2 Pharmacokinetic properties

Absorption
The pharmacokinetic properties of sofosbuvir, GS-331007 and velpatasvir have been evaluated in healthy adult subjects and in patients with chronic hepatitis C. Following oral administration of Epclusa, sofosbuvir was absorbed quickly and the peak median plasma concentration was observed 1 hour post-dose. Median peak plasma concentration of GS-331007 was observed 3 hours post-dose. Velpatasvir median peak concentrations were observed at 3 hours post-dose.

Based on the population pharmacokinetic analysis in HCV-infected patients, mean steady-state AUC0-24 for sofosbuvir (n = 982), GS-331007 (n = 1,428) and velpatasvir (n = 1,425) were 1,260, 13,970 and 2,970 ng•h/mL, respectively. Steady-state Cmax for sofosbuvir, GS-331007 and velpatasvir were 566, 868 and 259 ng/mL, respectively. Sofosbuvir and GS-331007 AUC0-24 and Cmax were similar in healthy adult subjects and patients with HCV infection. Relative to healthy subjects (n = 331), velpatasvir AUC0-24 and Cmax were 37% lower and 41% lower, respectively in HCV-infected patients.

Effects of food
Relative to fasting conditions, the administration of a single dose of Epclusa with a moderate fat (~600 kcal, 30% fat) or high fat (~800 kcal, 50% fat) meal resulted in a 34% and 21% increase in velpatasvir AUC0-inf, respectively, and a 31% and 5% increase in velpatasvir Cmax, respectively. The moderate or high fat meal increased sofosbuvir AUC0-inf by 60% and 78%, respectively, but did not substantially affect the sofosbuvir Cmax. The moderate or high fat meal did not alter GS-331007 AUC0-inf, but resulted in a 25% and 37% decrease in its Cmax, respectively. The response rates in Phase 3 studies were similar in HCV-infected patients who received Epclusa with food or without food. Epclusa can be administered without regard to food.

Distribution
Sofosbuvir is approximately 61-65% bound to human plasma proteins and the binding is independent of drug concentration over the range of 1 µg/mL to 20 µg/mL. Protein binding of GS-331007 was minimal in human plasma. After a single 400 mg dose of [14C]-sofosbuvir in healthy subjects, the blood to plasma ratio of [14C]-radioactivity was approximately 0.7.

Velpatasvir is > 99.5% bound to human plasma proteins and binding is independent of drug concentration over the range of 0.09 µg/mL to 1.8 µg/mL. After a single 100 mg dose of [14C]-velpatasvir in healthy subjects, the blood to plasma ratio of [14C]-radioactivity ranged between 0.52 and 0.67.

Biotransformation
Sofosbuvir is extensively metabolised in the liver to form the pharmacologically active nucleoside analog triphosphate GS-461203. The metabolic activation pathway involves sequential hydrolysis of the carboxyl ester moiety catalysed by human cathepsin A (CatA) or carboxylesterase 1 (CES1) and phosphoramide cleavage by histidine triad nucleotide-binding protein 1 (HINT1) followed by phosphorylation by the pyrimidine nucleotide biosynthesis pathway. Dephosphorylation results in the formation of nucleoside metabolite GS-331007 that cannot be efficiently rephosphorylated and lacks anti-HCV activity in vitro. Sofosbuvir and GS-331007 are not substrates or inhibitors of UGT1A1 or CYP3A4, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP2D6 enzymes. After a single 400 mg oral dose of [14C]-sofosbuvir, GS-331007 accounted for approximately > 90% of total systemic exposure.
Velpatasvir is a substrate of CYP2B6, CYP2C8, and CYP3A4 with slow turnover. Following a single dose of 100 mg $[^{14}C]$-velpatasvir, the majority (> 98%) of radioactivity in plasma was parent drug. The monohydroxylated and desmethylated velpatasvir were the metabolites identified in human plasma. Unchanged velpatasvir is the major species present in faeces.

Elimination

Following a single 400 mg oral dose of $[^{14}C]$-sofosbuvir, mean total recovery of the $[^{14}C]$-radioactivity was greater than 92%, consisting of approximately 80%, 14%, and 2.5% recovered in urine, faeces, and expired air, respectively. The majority of the sofosbuvir dose recovered in urine was GS-331007 (78%) while 3.5% was recovered as sofosbuvir. These data indicate that renal clearance is the major elimination pathway for GS-331007. The median terminal half-lives of sofosbuvir and GS-331007 following administration of Epclusa were 0.5 and 25 hours, respectively.

Following a single 100 mg oral dose of $[^{14}C]$-velpatasvir, mean total recovery of the $[^{14}C]$-radioactivity was 95%, consisting of approximately 94% and 0.4% recovered from the faeces and urine, respectively. Unchanged velpatasvir was the major species in faeces accounting for a mean of 77% of the administered dose, followed by monohydroxylated velpatasvir (5.9%) and desmethylated velpatasvir (3.0%). These data indicate that biliary excretion of parent drug was a major route of elimination for velpatasvir. The median terminal half-life of velpatasvir following administration of Epclusa was approximately 15 hours.

Linearity/non-linearity

Velpatasvir AUC increases in a nearly dose proportional manner over the dose range of 25 mg to 150 mg. Sofosbuvir and GS-331007 AUCs are near dose-proportional over the dose range of 200 mg to 1,200 mg.

In vitro potential for sofosbuvir/velpatasvir drug-drug interactions

Sofosbuvir and velpatasvir are substrates of drug transporters P-gp and BCRP while GS-331007 is not. Velpatasvir is also a substrate of OATP1B. *In vitro*, slow metabolic turnover of velpatasvir by CYP2B6, CYP2C8, and CYP3A4 was observed.

Velpatasvir is an inhibitor of drug transporter P-gp, BCRP, OATP1B1 and OATP1B3 and its involvement in drug interactions with these transporters is primarily limited to the process of absorption. At clinically relevant plasma concentration, velpatasvir is not an inhibitor of hepatic transporters bile salt export pump (BSEP), sodium taurocholate cotransporter protein (NTCP), OATP2B1, OATP1A2 or organic cation transporter (OCT) 1, renal transporters OCT2, OAT1, OAT3, multidrug resistance-associated protein 2 (MRP2) or multidrug and toxin extrusion protein (MATE) 1, or CYP or uridine glucuronosyltransferase (UGT) 1A1 enzymes.

Sofosbuvir and GS-331007 are not inhibitors of drug transporters P-gp, BCRP, MRP2, BSEP, OATP1B1, OATP1B3 and OCT1. GS-331007 is not an inhibitor of OAT1, OCT2, and MATE1.

Pharmacokinetics in special populations

Race and gender

No clinically relevant pharmacokinetic differences due to race or gender have been identified for sofosbuvir, GS-331007 or velpatasvir.

Elderly

Population pharmacokinetic analysis in HCV-infected patients showed that within the age range (18 to 82 years) analysed, age did not have a clinically relevant effect on the exposure to sofosbuvir, GS-331007, or velpatasvir.
Renal impairment

A summary of the effect of varying degrees of renal impairment (RI) on the exposures of the components of Epclusa compared to subjects with normal renal function, as described in the text below, are provided in Table 20.

Table 20: Effect of Varying Degrees of Renal Impairment on Exposures (AUC) of Sofosbuvir, GS-331007, and Velpatasvir Compared to Subjects with Normal Renal Function

<table>
<thead>
<tr>
<th></th>
<th>HCV-Negative Subjects</th>
<th>HCV-Infected Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mild RI (eGFR ≥50 and <80 mL/min/1.73m²)</td>
<td>Moderate RI (eGFR ≥30 and <50 mL/min/1.73m²)</td>
</tr>
<tr>
<td>Sofosbuvir</td>
<td>1.6-fold†</td>
<td>2.1-fold†</td>
</tr>
<tr>
<td>GS-331007</td>
<td>1.6-fold†</td>
<td>1.9-fold†</td>
</tr>
<tr>
<td>Velpatasvir</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The pharmacokinetics of sofosbuvir was studied in HCV negative adult patients with mild (eGFR ≥ 50 and < 80 mL/min/1.73 m²), moderate (eGFR ≥ 30 and < 50 mL/min/1.73 m²), severe renal impairment (eGFR < 30 mL/min/1.73 m²) and patients with ESRD requiring haemodialysis following a single 400 mg dose of sofosbuvir, relative to patients with normal renal function (eGFR > 80 mL/min/1.73 m²). GS-331007 is efficiently removed by haemodialysis with an extraction coefficient of approximately 53%. Following a single 400 mg dose of sofosbuvir, a 4 hour haemodialysis removed 18% of administered dose.

In HCV-infected patients with severe renal impairment treated with sofosbuvir 200 mg with ribavirin (n=10) or sofosbuvir 400 mg with ribavirin (n=10) for 24 weeks or ledipasvir/sofosbuvir 90/400 mg (n=18) for 12 weeks, the pharmacokinetics of sofosbuvir and GS-331007 were consistent with that observed in HCV negative adult patients with severe renal impairment.

The pharmacokinetics of velpatasvir was studied with a single dose of 100 mg velpatasvir in HCV negative patients with severe renal impairment (eGFR < 30 mL/min by Cockcroft-Gault).

The pharmacokinetics of sofosbuvir, GS-331007, and velpatasvir were studied in HCV-infected patients with ESRD requiring dialysis treated with Epclusa (n=59) for 12 weeks, and compared to patients without renal impairment in the sofosbuvir/velpatasvir Phase 2/3 studies.

Hepatic impairment

The pharmacokinetics of sofosbuvir was studied following 7-day dosing of 400 mg sofosbuvir in HCV-infected adult patients with moderate and severe hepatic impairment (CPT Class B and C). Relative to patients with normal hepatic function, the sofosbuvir AUC₀₋₂₄ was 126% and 143% higher in moderate and severe hepatic impairment, while the GS-331007 AUC₀₋₂₄ was 18% and 9% higher, respectively. Population pharmacokinetics analysis in HCV-infected adult patients indicated that cirrhosis (including decompensated cirrhosis) had no clinically relevant effect on the exposure to sofosbuvir and GS-331007.

The pharmacokinetics of velpatasvir was studied with a single dose of 100 mg velpatasvir in HCV negative adult patients with moderate and severe hepatic impairment (CPT Class B and C). Compared to subjects with normal hepatic function velpatasvir total plasma exposure (AUCₚₐₙ) was similar in patients with moderate or severe hepatic impairment. Population pharmacokinetics analysis in HCV-infected patients indicated that cirrhosis (including decompensated cirrhosis) had no clinically relevant effect on the exposure to velpatasvir (see section 4.2).

Body weight

In adults, body weight did not have a clinically significant effect on sofosbuvir or velpatasvir exposure according to a population pharmacokinetic analysis.
Paediatric population
Sofosbuvir, GS-331007 and velpatasvir exposures in paediatric patients aged 3 years and older receiving oral once daily doses of sofosbuvir/velpatasvir 400 mg/100 mg, 200 mg/50 mg or 150 mg/37.5 mg per day were similar to those in adults receiving once daily doses of sofosbuvir/velpatasvir 400 mg/100 mg.

The pharmacokinetics of sofosbuvir, GS-331007 and velpatasvir in paediatric patients aged less than 3 years have not been established (see section 4.2).

5.3 Preclinical safety data

Sofosbuvir

Exposure to sofosbuvir in rodent studies could not be detected likely due to high esterase activity and exposure to the major metabolite GS-331007 was instead used to estimate exposure margins.

Sofosbuvir was not genotoxic in a battery of in vitro or in vivo assays, including bacterial mutagenicity, chromosome aberration using human peripheral blood lymphocytes and in vivo mouse micronucleus assays. No teratogenic effects were observed in the rat and rabbit developmental toxicity studies with sofosbuvir. Sofosbuvir had no adverse effects on behaviour, reproduction, or development of the offspring in the rat pre- and post-natal development study.

Sofosbuvir was not a carcinogen in the 2-year mouse and rat carcinogenicity studies at GS-331007 exposures up to 15 and 9 times, respectively, higher than human exposure.

Velpatasvir

Velpatasvir was not genotoxic in a battery of in vitro or in vivo assays, including bacterial mutagenicity, chromosome aberration using human peripheral blood lymphocytes and in vivo rat micronucleus assays.

Velpatasvir was not carcinogenic in the 6-month rasH2 transgenic mouse and 2-year rat carcinogenicity studies at exposures at least 50-times and 5-times higher than human exposure, respectively.

Velpatasvir had no adverse effects on mating and fertility. No teratogenic effects were observed in the mouse and rat developmental toxicity studies with velpatasvir at AUC exposures approximately 31- and 6-fold higher, respectively, than the human exposure at the recommended clinical dose. However, a possible teratogenic effect was indicated in rabbits where an increase in total visceral malformations was seen in exposed animals at AUC exposures up to 0.7-fold the human exposure at recommended clinical dose. The human relevance of this finding is not known. Velpatasvir had no adverse effects on behaviour, reproduction, or development of the offspring in the rat pre- and post-natal development study at AUC exposures approximately 5-fold higher than the human exposure at the recommended clinical dose.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Tablet core

Copovidone (E1208)
Microcrystalline cellulose (E460)
Croscarmellose sodium (E468)
Magnesium stearate (E470b)
Film-coating

Poly(vinyl alcohol) (E1203)
Titanium dioxide (E171)
Macrogol (E1521)
Talc (E553b)
Iron oxide red (E172)

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

4 years.

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

6.5 Nature and contents of container

High density polyethylene (HDPE) bottle with a polypropylene child-resistant closure containing 28 film-coated tablets with polyester coil.

Pack size of 1 bottle containing 28 film-coated tablets.

6.6 Special precautions for disposal

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

Gilead Sciences Ireland UC
Carrigtohill
County Cork, T45 DP77
Ireland

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/16/1116/001
EU/1/16/1116/002

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 06 July 2016
Date of latest renewal: 22 March 2021
10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
1. NAME OF THE MEDICINAL PRODUCT

Epclusa 200 mg/50 mg coated granules in sachet
Epclusa 150 mg/37.5 mg coated granules in sachet

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Epclusa 200 mg/50 mg coated granules in sachet
Each sachet contains 200 mg sofosbuvir and 50 mg velpatasvir.
Excipient with known effect:
Each sachet contains 304 mg of lactose (as monohydrate).

Epclusa 150 mg/37.5 mg coated granules in sachet
Each sachet contains 150 mg sofosbuvir and 37.5 mg velpatasvir.
Excipient with known effect:
Each sachet contains 228 mg of lactose (as monohydrate).
For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Coated granules.

Epclusa 200 mg/50 mg oral granules, unit-dose sachet (each sachet contains 100 oral granules of 2.0/0.5 mg/granule)
White to off-white, coated granules 2 mm diameter in sachet.

Epclusa 150 mg/37.5 mg oral granules, unit-dose sachet (each sachet contains 75 oral granules of 2.0/0.5 mg/granule)
White to off-white, coated granules 2 mm diameter in sachet.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Epclusa is indicated for the treatment of chronic hepatitis C virus (HCV) infection in patients 3 years of age and older (see sections 4.2, 4.4 and 5.1).

4.2 Posology and method of administration

Epclusa treatment should be initiated and monitored by a physician experienced in the management of patients with HCV infection.
Posology

The recommended dose of Epclusa in paediatric patients aged 3 years and above is based on weight (as detailed in Table 3) and can be taken with or without food (see section 5.2).

A tablet formulation of Epclusa is available for the treatment of chronic HCV infection patients. Please refer to the Summary of Product Characteristics for Epclusa 400 mg/100 mg or 200 mg/50 mg film-coated tablets.

Table 1: Recommended treatment and duration for adults regardless of HCV genotypes

<table>
<thead>
<tr>
<th>Adult patient population</th>
<th>Treatment and duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients without cirrhosis and patients with compensated cirrhosis</td>
<td>Epclusa for 12 weeks</td>
</tr>
<tr>
<td></td>
<td>Addition of ribavirin may be considered for genotype 3 infected patients with compensated cirrhosis (see section 5.1)</td>
</tr>
<tr>
<td>Patients with decompensated cirrhosis</td>
<td>Epclusa + ribavirin for 12 weeks</td>
</tr>
</tbody>
</table>

* a Includes patients co-infected with human immunodeficiency virus (HIV) and patients with recurrent HCV post-liver transplant (see section 4.4).

When used in combination with ribavirin, refer also to the Summary of Product Characteristics of the medicinal product containing ribavirin.

The following dosing is recommended for adults where ribavirin is divided in two daily doses and given with food:

Table 2: Guidance for ribavirin dosing when administered with Epclusa to adults with decompensated cirrhosis

<table>
<thead>
<tr>
<th>Adult patient</th>
<th>Ribavirin dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child-Pugh-Turcotte (CPT) Class B cirrhosis pre-transplant</td>
<td>1,000 mg per day for patients < 75 kg and 1,200 mg for those weighing ≥ 75 kg</td>
</tr>
<tr>
<td>CPT Class C cirrhosis pre-transplant</td>
<td>Starting dose of 600 mg, which can be titrated up to a maximum of 1,000/1,200 mg (1,000 mg for patients weighing < 75 kg and 1,200 mg for patients weighing ≥ 75 kg) if well tolerated. If the starting dose is not well tolerated, the dose should be reduced as clinically indicated based on haemoglobin levels</td>
</tr>
<tr>
<td>CPT Class B or C post-transplant</td>
<td></td>
</tr>
</tbody>
</table>

If ribavirin is used in genotype 3 infected adult patients with compensated cirrhosis (pre- or post-transplant) the recommended dose of ribavirin is 1,000/1,200 mg (1,000 mg for adult patients weighing < 75 kg and 1,200 mg for adult patients weighing ≥ 75 kg).

For ribavirin dose modifications, refer to the Summary of Product Characteristics of the medicinal product containing ribavirin.
Table 3: Recommended treatment and duration for paediatric patients aged 3 to < 18 Years regardless of HCV genotype using Epclusa Oral Granules*

<table>
<thead>
<tr>
<th>Body weight (kg)</th>
<th>Dosing of Epclusa granules</th>
<th>Sofosbuvir/Velpatasvir daily dose</th>
<th>Recommended treatment regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 30</td>
<td>two 200 mg/50 mg sachets of granules once daily</td>
<td>400 mg/100 mg per day</td>
<td>Epclusa for 12 weeks</td>
</tr>
<tr>
<td>17 to < 30</td>
<td>one 200 mg/50 mg sachet of granules once daily</td>
<td>200 mg/50 mg per day</td>
<td></td>
</tr>
<tr>
<td><17</td>
<td>one 150 mg/37.5 mg sachet of granules once daily</td>
<td>150 mg/37.5 mg per day</td>
<td></td>
</tr>
</tbody>
</table>

*A tablet formulation of Epclusa is available for the treatment of chronic HCV infection patients. Please refer to the Summary of Product Characteristics for Epclusa 400 mg/100 mg or 200 mg/50 mg tablet.

Patients should be instructed that if vomiting occurs within 3 hours of dosing an additional dose of Epclusa should be taken. If vomiting occurs more than 3 hours after dosing, no further dose of Epclusa is needed (see section 5.1).

If a dose of Epclusa is missed and it is within 18 hours of the normal time, patients should be instructed to take the additional dose as soon as possible and then patients should take the next dose at the usual time. If it is after 18 hours then patients should be instructed to wait and take the next dose of Epclusa at the usual time. Patients should be instructed not to take a double dose of Epclusa.

*Adult patients who have previously failed therapy with an NS5A-containing regimen
Epclusa + ribavirin for 24 weeks may be considered (see section 4.4).

*Elderly
No dose adjustment is warranted for elderly patients (see section 5.2).

*Renal impairment
No dose adjustment of Epclusa is required for patients with mild or moderate renal impairment.

Safety data are limited in patients with severe renal impairment (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73 m²) and end stage renal disease (ESRD) requiring haemodialysis. Epclusa can be used in these patients with no dose adjustment when no other relevant treatment options are available (see sections 4.4, 5.1 and 5.2).

*Hepatic impairment
No dose adjustment of Epclusa is required for patients with mild, moderate, or severe hepatic impairment (CPT Class A, B, or C) (see section 5.2). Safety and efficacy of Epclusa has been assessed in patients with CPT Class B cirrhosis, but not in patients with CPT Class C cirrhosis (see sections 4.4 and 5.1).

*Paediatric population
The safety and efficacy of Epclusa in children aged less than 3 years has not been established. No data are available.

*Method of administration
For oral use.

Epclusa can be taken with or without food.
To help with swallowing of the Epclusa oral granules you can use food or water as detailed below. Alternatively, Epclusa oral granules can be swallowed without food or water.

Taking Epclusa oral granules with food to aid swallowing
To administer with food to aid swallowability of the granules, patients should be instructed to sprinkle the granules on one or more spoonfuls of non-acidic soft food at or below room temperature. Patients should be instructed to take the Epclusa oral granules within 15 minutes of gently mixing with food and to swallow the entire contents without chewing to avoid a bitter taste. Examples of non-acidic foods include chocolate syrup and ice-cream.

Taking Epclusa oral granules with water to aid swallowing
To administer with water, patients should be instructed that the granules can be taken directly into the mouth and swallowed with water. Patients should be instructed to swallow the entire contents of the sachet(s) without chewing.

Taking Epclusa oral granules without food or water
To administer without food or water, patients should be instructed that the granules can be taken directly into the mouth and swallowed. Patients should be instructed to swallow the entire contents of the sachet(s) without chewing (see section 5.2).

4.3 Contraindications

Hypersensitivity to the active substances or to any of the excipients listed in section 6.1.

Medicinal products that are strong P-glycoprotein (P-gp) and/or strong cytochrome P450 (CYP) inducers (carbamazepine, phenobarbital, phenytoin, rifampicin, rifabutin and St. John’s wort) (see section 4.5).

4.4 Special warnings and precautions for use

Epclusa should not be administered concurrently with other medicinal products containing sofosbuvir.

Severe bradycardia and heart block

Life-threatening cases of severe bradycardia and heart block have been observed when sofosbuvir-containing regimens are used in combination with amiodarone. Bradycardia has generally occurred within hours to days, but cases with a longer time to onset have been observed mostly up to 2 weeks after initiating HCV treatment.

Amiodarone should only be used in patients on Epclusa when other alternative anti-arrhythmic treatments are not tolerated or are contraindicated.

Should concomitant use of amiodarone be considered necessary, it is recommended that patients undergo cardiac monitoring in an in-patient setting for the first 48 hours of co-administration, after which outpatient or self-monitoring of the heart rate should occur on a daily basis through at least the first 2 weeks of treatment.

Due to the long half-life of amiodarone, cardiac monitoring as outlined above should also be carried out for patients who have discontinued amiodarone within the past few months and are to be initiated on Epclusa.

All patients with concurrent or recent use of amiodarone should be warned of the symptoms of bradycardia and heart block and should be advised to seek medical advice urgently should they experience them.
HCV/HBV (hepatitis B virus) co-infection

Cases of hepatitis B virus (HBV) reactivation, some of them fatal, have been reported during or after treatment with direct-acting antiviral medicinal products. HBV screening should be performed in all patients before initiation of treatment. HBV/HCV co-infected patients are at risk of HBV reactivation, and should therefore be monitored and managed according to current clinical guidelines.

Patients who have previously failed therapy with an NS5A-containing regimen

There are no clinical data to support the efficacy of sofosbuvir/velpatasvir for the treatment of patients who have failed treatment with a regimen containing another NS5A inhibitor. However, on the basis of NS5A resistance associated variants (RAVs) typically seen in patients who have failed therapy with other NS5A inhibitor containing regimens, the in vitro pharmacology of velpatasvir, and the outcomes of sofosbuvir/velpatasvir treatment in NS5A-naïve patients with baseline NS5A RAVs enrolled into the ASTRAL-studies, treatment with Epclusa + RBV for 24 weeks can be considered for patients who have failed therapy on an NS5A-containing regimen and who are deemed at high risk for clinical disease progression and who do not have alternative treatment options.

Renal impairment

Safety data are limited in patients with severe renal impairment (eGFR < 30 mL/min/1.73 m²) and ESRD requiring haemodialysis. Epclusa can be used in these patients with no dose adjustment when no other relevant treatment options are available (see sections 5.1 and 5.2). When Epclusa is used in combination with ribavirin refer also to the Summary of Product Characteristics for ribavirin for patients with creatinine clearance < 50 mL/min (see section 5.2).

Use with moderate P-gp inducers and/or moderate CYP inducers

Medicinal products that are moderate P-gp and/or moderate CYP inducers (e.g. efavirenz, modafinil, oxcarbazepine or rifapentine) may decrease sofosbuvir or velpatasvir plasma concentrations leading to reduced therapeutic effect of Epclusa. Co-administration of such medicinal products with Epclusa is not recommended (see section 4.5).

Use with certain HIV antiretroviral regimens

Epclusa has been shown to increase tenofovir exposure, especially when used together with an HIV regimen containing tenofovir disoproxil fumarate and a pharmacokinetic enhancer (ritonavir or cobicistat). The safety of tenofovir disoproxil fumarate in the setting of Epclusa and a pharmacokinetic enhancer has not been established. The potential risks and benefits associated with co-administration of Epclusa with the fixed-dose combination tablet containing elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate or tenofovir disoproxil fumarate given in conjunction with a boosted HIV protease inhibitor (e.g. atazanavir or darunavir) should be considered, particularly in patients at increased risk of renal dysfunction. Patients receiving Epclusa concomitantly with elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate or with tenofovir disoproxil fumarate and a boosted HIV protease inhibitor should be monitored for tenofovir-associated adverse reactions. Refer to tenofovir disoproxil fumarate, emtricitabine/tenofovir disoproxil fumarate, or elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate Summary of Product Characteristics for recommendations on renal monitoring.
Use in diabetic patients

Diabetics may experience improved glucose control, potentially resulting in symptomatic hypoglycaemia, after initiating HCV direct-acting antiviral treatment. Glucose levels of diabetic patients initiating direct-acting antiviral therapy should be closely monitored, particularly within the first 3 months, and their diabetic treatment modified when necessary. The physician in charge of the diabetic care of the patient should be informed when direct-acting antiviral therapy is initiated.

CPT Class C cirrhosis

Safety and efficacy of Epclusa has not been assessed in patients with CPT Class C cirrhosis (see section 5.1).

Liver transplant patients

The safety and efficacy of Epclusa in the treatment of HCV infection in patients who are post-liver transplant have not been assessed. Treatment with Epclusa in accordance with the recommended posology (see section 4.2) should be guided by an assessment of the potential benefits and risks for the individual patient.

Excipients

This medicinal product contains lactose. Patients with rare hereditary problems of galactose intolerance, total lactase deficiency or glucose-galactose malabsorption should not take this medicinal product.

This medicinal product contains less than 1 mmol sodium (23 mg) per sachet, that is to say essentially ‘sodium-free’.

4.5 Interaction with other medicinal products and other forms of interaction

As Epclusa contains sofosbuvir and velpatasvir, any interactions that have been identified with these active substances individually may occur with Epclusa.

Potential for Epclusa to affect other medicinal products

Velpatasvir is an inhibitor of drug transporter P-gp, breast cancer resistance protein (BCRP), organic anion-transporting polypeptide (OATP) 1B1 and OATP1B3. Co-administration of Epclusa with medicinal products that are substrates of these transporters may increase the exposure of such medicinal products. See Table 4 for examples of interactions with sensitive substrates of P-gp (digoxin), BCRP (rosuvastatin), and OATP (pravastatin).

Potential for other medicinal products to affect Epclusa

Sofosbuvir and velpatasvir are substrates of drug transporters P-gp and BCRP. Velpatasvir is also a substrate of drug transporter OATP1B1. In vitro, slow metabolic turnover of velpatasvir by CYP2B6, CYP2C8 and CYP3A4 was observed. Medicinal products that are strong inducers of P-gp and/or strong inducers of CYP2B6, CYP2C8, or CYP3A4 (e.g. carbamazepine, phenobarbital and phenytoin, rifampicin, rifabutin and St. John’s wort) may decrease plasma concentrations of sofosbuvir or velpatasvir leading to reduced therapeutic effect of sofosbuvir/velpatasvir. The use of such medicinal products with Epclusa is contraindicated (see section 4.3). Medicinal products that are moderate P-gp inducers and/or moderate CYP inducers (e.g. efavirenz, modafinil, oxcarbazepine or rifapentine) may decrease sofosbuvir or velpatasvir plasma concentration leading to reduced therapeutic effect of Epclusa. Co-administration with such medicinal products is not recommended with Epclusa (see section 4.4). Co-administration with medicinal products that inhibit P-gp or BCRP may increase sofosbuvir or velpatasvir plasma concentrations. Medicinal products that inhibit OATP, CYP2B6, CYP2C8, or CYP3A4 may increase plasma concentration of velpatasvir. Clinically significant
medicinal product interactions with Epclusa mediated by P-gp, BCRP, OATP, or CYP450 inhibitors are not expected; Epclusa may be co-administered with P-gp, BCRP, OATP and CYP inhibitors.

Patients treated with vitamin K antagonists

As liver function may change during treatment with Epclusa, a close monitoring of International Normalised Ratio (INR) values is recommended.

Impact of DAA therapy on medicinal products metabolized by the liver

The pharmacokinetics of medicinal products that are metabolized by the liver (e.g. immunosuppressive medicinal products such as calcineurin inhibitors) may be impacted by changes in liver function during DAA therapy, related to clearance of HCV.

Interactions between Epclusa and other medicinal products

Table 4 provides a listing of established or potentially clinically significant medicinal product interactions (where 90% confidence interval [CI] of the geometric least-squares mean [GLSM] ratio were within “↔”, extended above “↑”, or extended below “↓” the predetermined interaction boundaries). The medicinal product interactions described are based on studies conducted with either sofosbuvir/velpatasvir or velpatasvir and sofosbuvir as individual agents, or are predicted medicinal product interactions that may occur with sofosbuvir/velpatasvir. The table is not all-inclusive.

Table 4: Interactions between Epclusa and other medicinal products

<table>
<thead>
<tr>
<th>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</th>
<th>Effects on medicinal product levels. Mean ratio (90% confidence interval)</th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACID REDUCING AGENTS</td>
<td>Active</td>
<td>C_{max}</td>
</tr>
<tr>
<td>Antacids</td>
<td>Interaction not studied. Expected.</td>
<td>Expected.</td>
</tr>
<tr>
<td>e.g. Aluminium or magnesium hydroxide; calcium carbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Increase in gastric pH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂-receptor antagonists</td>
<td>Sofosbuvir</td>
<td>↔</td>
</tr>
<tr>
<td>Famotidine (40 mg single dose)/sofosbuvir/velpatasvir (400/100 mg single dose)</td>
<td>Velpatasvir</td>
<td>↓ 0.80 (0.70, 0.91)</td>
</tr>
<tr>
<td>Famotidine dosed simultaneously with Epclusa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cimetidine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nizatidine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranitidine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Increase in gastric pH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</td>
<td>Effects on medicinal product levels. Mean ratio (90% confidence interval)(^{a,b})</td>
<td>Recommendation concerning co-administration with Epclusa</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Famotidine (40 mg single dose)/ sofosbuvir/ velpatasvir (400/ 100 mg single dose)(^c)
 (Increase in gastric pH)</td>
<td>Sofosbuvir
↓↓
0.77
(0.68, 0.87)
↓↓
0.80
(0.73, 0.88)
</td>
<td>Co-administration with proton pump inhibitors is not recommended. If it is considered necessary to co-administer, then Epclusa should be administered with food and taken 4 hours before proton pump inhibitor at max doses comparable to omeprazole 20 mg.</td>
</tr>
<tr>
<td>Famotidine dosed 12 hours prior to Epclusa(^d)
 (Increase in gastric pH)</td>
<td>Velpatasvir
↔ ↔
</td>
<td></td>
</tr>
<tr>
<td>Proton pump inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omeprazole (20 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg single dose fasted)(^f)
 (Increase in gastric pH)</td>
<td>Sofosbuvir
↓↓
0.66
(0.55, 0.78)
↓↓
0.71
(0.60, 0.83)
</td>
<td></td>
</tr>
<tr>
<td>Omeprazole dosed simultaneously with Epclusa(^d)
 (Increase in gastric pH)</td>
<td>Velpatasvir
↓↓
0.63
(0.50, 0.78)
↓↓
0.64
(0.52, 0.79)
</td>
<td></td>
</tr>
<tr>
<td>Lansoprazole(^e)
 Rabeprazole(^e)
 Pantoprazole(^e)
 Esomeprazole(^e)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amiodarone
 Digoxin
 Digoxin (0.25 mg single dose)/ velpatasvir (100 mg single dose)
 (Inhibition of P-gp)</td>
<td>Effect on amiodarone, velpatasvir, and sofosbuvir concentrations unknown.
Interaction only studied with velpatasvir.
Expected:
↔ Sofosbuvir
Effect on velpatasvir exposure not studied
Expected:
↔ Velpatasvir
Observed:
Digoxin
↑↑
1.9
(1.7, 2.1)
↑↑
1.3
(1.1, 1.6)
</td>
<td>Co-administration of amiodarone with a sofosbuvir containing regimen may result in serious symptomatic bradycardia. Use only if no other alternative is available. Close monitoring is recommended if this medicinal product is administered with Epclusa (see sections 4.4 and 4.8).
Co-administration of Epclusa with digoxin may increase the concentration of digoxin. Caution is warranted and therapeutic concentration monitoring of digoxin is recommended when co-administered with Epclusa.</td>
</tr>
<tr>
<td>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</td>
<td>Effects on medicinal product levels. Mean ratio (90% confidence interval)</td>
<td>Recommendation concerning co-administration with Epclusa</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ANTICOAGULANTS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Dabigatran etexilate (Inhibition of P-gp) | Interaction not studied.
Expected:
↑ Dabigatran
↔ Sofosbuvir
↔ Velpatasvir | Clinical monitoring, looking for signs of bleeding and anaemia, is recommended when dabigatran etexilate is co-administered with Epclusa. A coagulation test helps to identify patients with an increased bleeding risk due to increased dabigatran exposure. |
| Vitamin K antagonists | Interaction not studied | Close monitoring of INR is recommended with all vitamin K antagonists. This is due to liver function changes during treatment with Epclusa. |
| **ANTICONVULSANTS** | | |
| Phenytoin
Phenobarbital (Induction of P-gp and CYPs) | Interaction not studied.
Expected:
↓ Sofosbuvir
↓ Velpatasvir | Epclusa is contraindicated with phenobarbital and phenytoin (see section 4.3). |
| Carbamazepine (Induction of P-gp and CYPs) | Interaction not studied.
Expected:
↓ Velpatasvir | Epclusa is contraindicated with carbamazepine (see section 4.3). |
| Oxcarbazepine (Induction of P-gp and CYPs) | Interaction not studied.
Expected:
↓ Sofosbuvir
↓ Velpatasvir | Co-administration of Epclusa with oxcarbazepine is expected to decrease the concentration of sofosbuvir and velpatasvir, leading to reduced therapeutic effect of Epclusa. Co-administration is not recommended (see section 4.4). |
| **ANTIFUNGALS** | | |
| Ketoconazole | Interaction only studied with velpatasvir
Expected:
↔ Sofosbuvir | No dose adjustment of Epclusa or ketoconazole is required. |
| Ketoconazole (200 mg twice daily)/ velpatasvir (100 mg single dose) | Effect on ketoconazole exposure not studied.
Expected:
↔ Ketoconazole | |
| (Inhibition of P-gp and CYPs) | *Observed:*
Velpatasvir
↑ 1.3
(1.0, 1.6)
↑ 1.7
(1.4, 2.2) | |
| Itraconazole
Voriconazole
Posaconazole
Isavuconazole |
Effects on medicinal product levels. Possible Mechanism of Interaction
Interaction not studied.
Interaction not studied.
Interaction not studied.
Interaction not studied. | **Clinical monitoring, looking for signs of bleeding and anaemia, is recommended when dabigatran etexilate is co-administered with Epclusa. A coagulation test helps to identify patients with an increased bleeding risk due to increased dabigatran exposure.**
Close monitoring of INR is recommended with all vitamin K antagonists. This is due to liver function changes during treatment with Epclusa.
Epclusa is contraindicated with phenobarbital and phenytoin (see section 4.3).
Epclusa is contraindicated with carbamazepine (see section 4.3).
Co-administration of Epclusa with oxcarbazepine is expected to decrease the concentration of sofosbuvir and velpatasvir, leading to reduced therapeutic effect of Epclusa. Co-administration is not recommended (see section 4.4). | **No dose adjustment of Epclusa or ketoconazole is required.** |
<table>
<thead>
<tr>
<th>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</th>
<th>Effects on medicinal product levels. Mean ratio (90% confidence interval)(^{a,b})</th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIMYCOBACTERIALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampicin (600 mg once daily)/ sofosbuvir (400 mg single dose)(^d)</td>
<td>Effect on rifampicin exposure not studied.
Expected: ↔ Rifampicin</td>
<td>Epclusa is contraindicated with rifampicin (see section 4.3).</td>
</tr>
<tr>
<td>(Induction of P-gp and CYPs)</td>
<td>Observed:
Sofosbuvir ↓ 0.23
(0.19, 0.29) ↓ 0.28
(0.24, 0.32)</td>
<td></td>
</tr>
<tr>
<td>Rifampicin (600 mg once daily)/ velpatasvir (100 mg single dose)</td>
<td>Effect on rifampicin exposure not studied.
Expected: ↔ Rifampicin</td>
<td>Epclusa is contraindicated with rifampicin (see section 4.3).</td>
</tr>
<tr>
<td>(Induction of P-gp and CYPs)</td>
<td>Observed:
Velpatasvir ↓ 0.29
(0.23, 0.37) ↓ 0.18
(0.15, 0.22)</td>
<td></td>
</tr>
<tr>
<td>Rifabutin</td>
<td>Interaction not studied.
Expected: ↓ Velpatasvir</td>
<td>Epclusa is contraindicated with rifabutin (see section 4.3).</td>
</tr>
<tr>
<td>(Induction of P-gp and CYPs)</td>
<td>Observed:
Sofosbuvir ↓ 0.64
(0.53, 0.77) ↓ 0.76
(0.63, 0.91)</td>
<td></td>
</tr>
<tr>
<td>Rifapentine</td>
<td>Interaction not studied.
Expected: ↓ Sofosbuvir ↓ Velpatasvir</td>
<td>Co-administration of Epclusa with rifapentine is expected to decrease the concentration of sofosbuvir and velpatasvir, leading to reduced therapeutic effect of Epclusa. Co-administration is not recommended (see section 4.4).</td>
</tr>
<tr>
<td>(Induction of P-gp and CYPs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV ANTIVIRAL AGENTS: REVERSE TRANSCRIPTASE INHIBITORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenofovir disoproxil fumarate</td>
<td>Epclusa has been shown to increase tenofovir exposure (P-gp-inhibition). The increase in tenofovir exposure (AUC and (C_{\text{max}})) was around 40-80% during co-treatment with Epclusa and tenofovir disoproxil fumarate/emtricitabine as part of various HIV regimens.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patients receiving tenofovir disoproxil fumarate and Epclusa concomitantly should be monitored for adverse reactions associated with tenofovir disoproxil fumarate. Refer to the tenofovir disoproxil fumarate-containing product’s Summary of Product Characteristics for recommendations on renal monitoring (see section 4.4).</td>
<td></td>
</tr>
<tr>
<td>Efavirenz/ emtricitabine/ tenofovir disoproxil fumarate (600/ 200/ 300 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg once daily)(^c,d)</td>
<td>Efavirenz ↔ ↔ ↔ ↔</td>
<td>Co-administration of Epclusa with efavirenz/ emtricitabine/ tenofovir disoproxil fumarate is expected to decrease the concentration of velpatasvir. Co-administration of Epclusa with efavirenz-containing regimens is not recommended (see section 4.4).</td>
</tr>
<tr>
<td></td>
<td>Sofosbuvir ↑ 1.4
(1.1, 1.7) ↔ ↔</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Velpatasvir ↓ 0.53
(0.43, 0.64) ↓ 0.47
(0.39, 0.57) ↓ 0.43
(0.36, 0.52)</td>
<td></td>
</tr>
<tr>
<td>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</td>
<td>Effects on medicinal product levels. Mean ratio (90% confidence interval)a,b</td>
<td>Recommendation concerning co-administration with Epclusa</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Emtricitabine/ rilpivirine/ tenofovir disoproxil fumarate (200/ 25/ 300 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg once daily)c.d</td>
<td></td>
<td>No dose adjustment of Epclusa or emtricitabine/ rilpivirine/ tenofovir disoproxil fumarate is required.</td>
</tr>
<tr>
<td>HIV ANTIVIRAL AGENTS: HIV PROTEASE INHIBITORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir boosted with ritonavir (300/ 100 mg once daily) + emtricitabine/ tenofovir disoproxil fumarate (200/ 300 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg once daily)c.d</td>
<td>Atazanavir ↔ ↔ ↑ 1.4 (1.2, 1.6)</td>
<td>No dose adjustment of Epclusa, atazanavir (ritonavir boosted) or emtricitabine/ tenofovir disoproxil fumarate is required.</td>
</tr>
<tr>
<td></td>
<td>Ritonavir ↔ ↑ 1.3 (1.5, 1.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sofosbuvir ↔ ↔</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Velpatasvir ↑ 1.6 (1.4, 1.7) ↑ 2.4 (2.2, 2.6) ↑ 4.0 (3.6, 4.5)</td>
<td></td>
</tr>
<tr>
<td>Darunavir boosted with ritonavir (800/ 100 mg once daily) + emtricitabine/ tenofovir disoproxil fumarate (200/ 300 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg once daily)c.d</td>
<td>Darunavir ↔ ↔ ↔</td>
<td>No dose adjustment of Epclusa, darunavir (ritonavir boosted) or emtricitabine/ tenofovir disoproxil fumarate is required.</td>
</tr>
<tr>
<td></td>
<td>Ritonavir ↔ ↔ ↔</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sofosbuvir ↓ ↓ 0.62 (0.54, 0.71) 0.72 (0.66, 0.80)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Velpatasvir ↓ ↓ 0.76 (0.65, 0.89) ↔ ↔</td>
<td></td>
</tr>
<tr>
<td>Lopinavir boosted with ritonavir (4x200 mg/ 50 mg once daily) + emtricitabine/ tenofovir disoproxil fumarate (200/ 300 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg once daily)c.d</td>
<td>Lopinavir ↔ ↔ ↔</td>
<td>No dose adjustment of Epclusa, lopinavir (ritonavir boosted) or emtricitabine/ tenofovir disoproxil fumarate is required.</td>
</tr>
<tr>
<td></td>
<td>Ritonavir ↔ ↔ ↔</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sofosbuvir ↓ ↓ 0.59 (0.49, 0.71) 0.7 (0.6, 0.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Velpatasvir ↓ ↓ 0.70 (0.59, 0.83) ↔ ↔ 1.6 (1.4, 1.9)</td>
<td></td>
</tr>
<tr>
<td>HIV ANTIVIRAL AGENTS: INTEGRASE INHIBITORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raltegravir (400 mg twice daily)c + emtricitabine/ tenofovir disoproxil fumarate (200/ 300 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg once daily)c.d</td>
<td>Raltegravir ↔ ↔ ↓ 0.79 (0.42, 1.5)</td>
<td>No dose adjustment of Epclusa, raltegravir or emtricitabine/ tenofovir disoproxil fumarate is required.</td>
</tr>
<tr>
<td></td>
<td>Sofosbuvir ↔ ↔</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Velpatasvir ↔ ↔</td>
<td></td>
</tr>
</tbody>
</table>
Medicinal product by therapeutic areas/Possible Mechanism of Interaction

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Elvitegravir/ cobicistat/ emtricitabine/ tenofovir alafenamide fumarate (150/ 150/ 200/ 10 mg once daily)/ sofosbuvir/ velpatasvir (400/ 100 mg once daily)³, ⁴</th>
<th>Elvitegravir</th>
<th>C₀-max</th>
<th>AUC</th>
<th>C₀-min</th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Elvitegravir</td>
<td>↔</td>
<td>↔</td>
<td>↔</td>
<td></td>
<td>No dose adjustment of Epclusa or elvitegravir/ cobicistat/ emtricitabine/ tenofovir alafenamide fumarate is required.</td>
</tr>
<tr>
<td></td>
<td>Cobicistat</td>
<td>↔</td>
<td>↔</td>
<td>↑</td>
<td>2.0</td>
<td>(1.7, 2.5)</td>
</tr>
<tr>
<td></td>
<td>Tenofovir alafenamide</td>
<td>↔</td>
<td>↔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sofosbuvir</td>
<td>↔</td>
<td>↑</td>
<td>1.4</td>
<td>(1.2, 1.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Velpatasvir</td>
<td>↑</td>
<td>1.3</td>
<td>(1.2, 1.5)</td>
<td>1.5</td>
<td>(1.4, 1.7)</td>
</tr>
</tbody>
</table>

HERBAL SUPPLEMENTS

| St. John’s wort | Interaction not studied. Expected: ↓ Sofosbuvir ↓ Velpatasvir | Epclusa is contraindicated with St. John’s wort (see section 4.3). |

HMG-CoA REDUCTASE INHIBITORS

| Interaction only studied with velpatasvir Expected: ↔ Sofosbuvir | No dose adjustment of Epclusa or atorvastatin is required. |

| Rosuvastatin (10 mg single dose)/ velpatasvir (100 mg once daily)⁶ | Observed: ↑ 2.6 | ↑ 2.7 | (2.3, 2.9) | (2.5, 2.9) | Co-administration of Epclusa with rosuvastatin increases the concentration of rosuvastatin, which is associated with increased risk of myopathy, including rhabdomyolysis. Rosuvastatin, at a dose that does not exceed 10 mg, may be administered with Epclusa. |

| Rosuvastatin (10 mg single dose) | Observed: ↑ 1.5 | ↑ 1.6 | (1.5, 1.9) | (1.5, 1.6) | No dose adjustment of Epclusa or atorvastatin is required. |

| Rosuvastatin (40 mg single dose) + sofosbuvir / velpatasvir (400/ 100 mg once daily)⁶ | Observed: ↑ 1.7 | ↑ 1.5 | (1.5, 1.9) | (1.5, 1.6) | No dose adjustment of Epclusa or atorvastatin is required. |

| Atorvastatin (40 mg single dose) + sofosbuvir / velpatasvir (400/ 100 mg once daily)⁶ | Observed: ↑ 1.7 | ↑ 1.5 | (1.5, 1.9) | (1.5, 1.6) | No dose adjustment of Epclusa or atorvastatin is required. |

| HMG-CoA REDUCTASE INHIBITORS | Interaction only studied with velpatasvir Expected: ↔ Sofosbuvir | Co-administration of Epclusa with rosuvastatin increases the concentration of rosuvastatin, which is associated with increased risk of myopathy, including rhabdomyolysis. Rosuvastatin, at a dose that does not exceed 10 mg, may be administered with Epclusa. |

HERBAL SUPPLEMENTS

| St. John’s wort | Interaction not studied. Expected: ↓ Sofosbuvir ↓ Velpatasvir | Epclusa is contraindicated with St. John’s wort (see section 4.3). |

HMG-CoA REDUCTASE INHIBITORS

| Rosuvastatin (10 mg single dose) | Observed: ↑ 2.6 | ↑ 2.7 | (2.3, 2.9) | (2.5, 2.9) | Co-administration of Epclusa with rosuvastatin increases the concentration of rosuvastatin, which is associated with increased risk of myopathy, including rhabdomyolysis. Rosuvastatin, at a dose that does not exceed 10 mg, may be administered with Epclusa. |

| Rosuvastatin (10 mg single dose) | Observed: ↑ 1.5 | ↑ 1.6 | (1.5, 1.9) | (1.5, 1.6) | No dose adjustment of Epclusa or atorvastatin is required. |

HERBAL SUPPLEMENTS

| St. John’s wort | Interaction not studied. Expected: ↓ Sofosbuvir ↓ Velpatasvir | Epclusa is contraindicated with St. John’s wort (see section 4.3). |

HMG-CoA REDUCTASE INHIBITORS

| Rosuvastatin (10 mg single dose) + sofosbuvir / velpatasvir (400/ 100 mg once daily)⁶ | Observed: ↑ 1.7 | ↑ 1.5 | (1.5, 1.9) | (1.5, 1.6) | No dose adjustment of Epclusa or atorvastatin is required. |

| Rosuvastatin (40 mg single dose) + sofosbuvir / velpatasvir (400/ 100 mg once daily)⁶ | Observed: ↑ 1.7 | ↑ 1.5 | (1.5, 1.9) | (1.5, 1.6) | No dose adjustment of Epclusa or atorvastatin is required. |

<p>| Atorvastatin (40 mg single dose) + sofosbuvir / velpatasvir (400/ 100 mg once daily)⁶ | Observed: ↑ 1.7 | ↑ 1.5 | (1.5, 1.9) | (1.5, 1.6) | No dose adjustment of Epclusa or atorvastatin is required. |</p>
<table>
<thead>
<tr>
<th>Medicinal product by therapeutic areas/Possible Mechanism of Interaction</th>
<th>Effects on medicinal product levels. Mean ratio (90% confidence interval)a,b</th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
</table>
| Pravastatin (40 mg single dose)/ velpatasvir (100 mg once daily)d (Inhibition of OATP1B) | Interaction only studied with velpatasvir
Expected: ↔ Sofosbuvir
Observed: Pravastatin
 - \(C_{\text{max}}\): 1.3 (1.1, 1.5)
 - \(AUC\): 1.4 (1.2, 1.5) | No dose adjustment of Epclusa or pravastatin is required. |
| Other statins | Expected: ↑ Statins | Interactions cannot be excluded with other HMG-CoA reductase inhibitors. When co-administered with Epclusa, careful monitoring for statin adverse reactions should be undertaken and a reduced dose of statins should be considered if required. |
| **NARCOTIC ANALGESICS** | | |
| Methadone (Methadone maintenance therapy [30 to 130 mg daily])/ sofosbuvir (400 mg once daily)d | R-methadone ↔ ↔ ↔ | No dose adjustment of Epclusa or methadone is required. |
| Sofosbuvir ↔ ↑ 1.3 (1.0, 1.7) | |
| Methadone | Interaction only studied with sofosbuvir
Expected: ↔ Velpatasvir | |
| **IMMUNOSUPPRESSANTS** | | |
| Ciclosporin (600 mg single dose)/ sofosbuvir (400 mg single dose)f | Ciclosporin ↔ ↔ | No dose adjustment of Epclusa or ciclosporin is required at initiation of co-administration. Afterwards, close monitoring and potential dose adjustment of ciclosporin may be required. |
| Sofosbuvir ↑ 2.5 (1.9, 3.5) ↑ 4.5 (3.3, 6.3) | |
| Ciclosporin (600 mg single dose)f/ velpatasvir (100 mg single dose)d | Ciclosporin ↔ ↓ 0.88 (0.78, 1.0) | |
| Velpatasvir ↑ 1.6 (1.2, 2.0) ↑ 2.0 (1.5, 2.7) | |
| Tacrolimus (5 mg single dose)f/ sofosbuvir (400 mg single dose)d | Tacrolimus ↓ 0.73 (0.59, 0.90) ↑ 1.1 (0.84, 1.4) | No dose adjustment of Epclusa or tacrolimus is required at initiation of co-administration. Afterwards, close monitoring and potential dose adjustment of tacrolimus may be required. |
| Sofosbuvir ↓ 0.97 (0.65, 1.4) ↑ 1.1 (0.81, 1.6) | |
| Tacrolimus | Effect on velpatasvir exposure not studied.
Expected: ↔ Velpatasvir | |
Medicinal product by therapeutic areas/Possible Mechanism of Interaction

<table>
<thead>
<tr>
<th>Active</th>
<th>Norgestimate/ ethinyl estradiol (norgestimate 0.180 mg/ 0.215 mg/ 0.25 mg/ ethinyl estradiol 0.025 mg)/ sofosbuvir (400 mg once daily)(d)</th>
<th>(\leftrightarrow)</th>
<th>(\leftrightarrow)</th>
<th>(\leftrightarrow)</th>
<th>Recommendation concerning co-administration with Epclusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\uparrow) 1.2 (0.98, 1.5)</td>
<td>(\uparrow) 1.2 (1.0, 1.5)</td>
<td>No dose adjustment of oral contraceptives is required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\leftrightarrow)</td>
<td>Norgestrel (\leftrightarrow) Ethinyl estradiol</td>
<td>(\leftrightarrow)</td>
<td>(\leftrightarrow)</td>
<td>(\leftrightarrow)</td>
<td>(\leftrightarrow)</td>
</tr>
<tr>
<td>(\uparrow) 1.4 (1.2, 1.7)</td>
<td>(\downarrow) 0.83 (0.65, 1.1)</td>
</tr>
</tbody>
</table>

\(a\) Mean ratio (90% CI) of co-administered drug pharmacokinetics of study medicinal products alone or in combination. No effect = 1.00.

\(b\) All interaction studies conducted in healthy volunteers.

\(c\) Administered as Epclusa.

\(d\) Lack of pharmacokinetics interaction bounds 70-143%.

\(e\) These are medicinal products within class where similar interactions could be predicted.

\(f\) Bioequivalence/Equivalence boundary 80-125%.

\(g\) Lack of pharmacokinetics interaction bounds 50-200%.

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no or limited amount of data (less than 300 pregnancy outcomes) from the use of sofosbuvir, velpatasvir or Epclusa in pregnant women.

Sofosbuvir

Animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity (see section 5.3).

It has not been possible to fully estimate exposure margins achieved for sofosbuvir in the rat relative to the exposure in humans at the recommended clinical dose (see section 5.3).

Velpatasvir

Animal studies have shown a possible link to reproductive toxicity (see section 5.3).

As a precautionary measure, Epclusa use is not recommended during pregnancy.

Breast-feeding

It is unknown whether sofosbuvir, metabolites of sofosbuvir or velpatasvir are excreted in human milk.

Available pharmacokinetic data in animals have shown excretion of velpatasvir and metabolites of sofosbuvir in milk.
A risk to the newborns/infants cannot be excluded. Therefore, Epclusa should not be used during breast-feeding.

Fertility

No human data on the effect of Epclusa on fertility are available. Animal studies do not indicate harmful effects of sofosbuvir or velpatasvir on fertility.

If ribavirin is co-administered with Epclusa, refer to the Summary of Product Characteristics for ribavirin for detailed recommendations regarding pregnancy, contraception, and breast-feeding.

4.7 Effects on ability to drive and use machines

Epclusa has no or negligible influence on the ability to drive and use machines.

4.8 Undesirable effects

Summary of the safety profile

The safety profile of Epclusa has been determined in pooled Phase 3 clinical studies of patients with genotype 1, 2, 3, 4, 5 or 6 HCV infection and in the postmarketing setting. No adverse drug reactions to Epclusa were identified from clinical studies. In the postmarketing setting, cases of severe bradycardia and heart block have been observed when SOF-containing products are used in combination with amiodarone, and HBV reactivation has been observed in patients coinfected with HCV/HBV following treatment with DAAs (see section 4.4).

Tabulated summary of adverse reactions

Assessment of adverse reactions for Epclusa is based on safety data from clinical studies and postmarketing experience. All adverse reactions are presented in Table 5. The adverse reactions are listed below by system organ class and frequency. Frequencies are defined as follows: very common (≥ 1/10); common (≥ 1/100 to < 1/10); uncommon (≥ 1/1000 to < 1/100); rare (≥ 1/10,000 to < 1/1000) or very rare (< 1/10,000).

Table 5: Adverse drug reactions identified with Epclusa

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Adverse drug reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
</tr>
<tr>
<td>Very common</td>
<td>vomiting(^a)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders:</td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>rash(^b)</td>
</tr>
<tr>
<td>Uncommon</td>
<td>angioedema(^b)</td>
</tr>
</tbody>
</table>

\(^a\) Adverse reaction was observed in paediatric patients aged 3 to < 6 years
\(^b\) Adverse reaction identified through post-marketing surveillance for sofosbuvir/velpatasvir-containing products

Description of selected adverse reactions

Cardiac arrhythmias
Cases of severe bradycardia and heart block have been observed when sofosbuvir-containing regimens are used in combination with amiodarone and/or other medicinal products that lower heart rate (see sections 4.4 and 4.5).

Skin disorders
Frequency not known: Stevens-Johnson syndrome
Paediatric population

The adverse reactions observed were consistent with those observed in clinical studies of Epclusa in adults. Vomiting was observed as a very common adverse drug reaction to Epclusa in paediatric patients aged 3 to < 6 years. The safety assessment of Epclusa in paediatric patients aged 3 years and older is based on data from a Phase 2, open-label clinical study (study 1143) that enrolled 216 patients who were treated with sofosbuvir/velpatasvir for 12 weeks.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

The highest documented doses of sofosbuvir and velpatasvir were a single dose of 1,200 mg and a single dose of 500 mg, respectively. In these healthy adult volunteer studies, there were no untoward effects observed at these dose levels. The effects of higher doses/exposures are not known.

No specific antidote is available for overdose with Epclusa. If overdose occurs the patient must be monitored for evidence of toxicity. Treatment of overdose with Epclusa consists of general supportive measures including monitoring of vital signs, as well as observation of the clinical status of the patient. Haemodialysis can efficiently remove the predominant circulating metabolite of sofosbuvir, GS-331007, with an extraction ratio of 53%. Haemodialysis is unlikely to result in significant removal of velpatasvir, since velpatasvir is highly bound to plasma protein.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antivirals for systemic use; Direct acting antiviral, ATC code: J05AP55

Mechanism of action

Sofosbuvir is a pan-genotypic inhibitor of the HCV NS5B RNA-dependent RNA polymerase, which is essential for viral replication. Sofosbuvir is a nucleotide prodrug that undergoes intracellular metabolism to form the pharmacologically active uridine analogue triphosphate (GS-461203), which can be incorporated into HCV RNA by the NS5B polymerase and acts as a chain terminator. GS-461203 (the active metabolite of sofosbuvir) is neither an inhibitor of human DNA and RNA polymerases nor an inhibitor of mitochondrial RNA polymerase.

Velpatasvir is a HCV inhibitor targeting the HCV NS5A protein, which is essential for both RNA replication and the assembly of HCV virions. *In vitro* resistance selection and cross-resistance studies indicate velpatasvir targets NS5A as its mode of action.

Antiviral activity

The 50% effective concentration (EC₅₀) values of sofosbuvir and velpatasvir against full-length or chimeric replicons encoding NS5B and NS5A sequences from the laboratory strains are presented in Table 6. The EC₅₀ values of sofosbuvir and velpatasvir against clinical isolates are presented in Table 7.
Table 6: Activity of sofosbuvir and velpatasvir against full-length or chimeric laboratory replicons

<table>
<thead>
<tr>
<th>Replicon genotype</th>
<th>Sofosbuvir EC50, nM<sup>a</sup></th>
<th>Velpatasvir EC50, nM<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>40</td>
<td>0.014</td>
</tr>
<tr>
<td>1b</td>
<td>110</td>
<td>0.016</td>
</tr>
<tr>
<td>2a</td>
<td>50</td>
<td>0.005-0.016<sup>c</sup></td>
</tr>
<tr>
<td>2b</td>
<td>15<sup>b</sup></td>
<td>0.002-0.006<sup>c</sup></td>
</tr>
<tr>
<td>3a</td>
<td>50</td>
<td>0.004</td>
</tr>
<tr>
<td>4a</td>
<td>40</td>
<td>0.009</td>
</tr>
<tr>
<td>4d</td>
<td>NA</td>
<td>0.004</td>
</tr>
<tr>
<td>5a</td>
<td>15<sup>b</sup></td>
<td>0.021-0.054<sup>d</sup></td>
</tr>
<tr>
<td>6a</td>
<td>14<sup>b</sup></td>
<td>0.006-0.009</td>
</tr>
<tr>
<td>6e</td>
<td>NA</td>
<td>0.130<sup>d</sup></td>
</tr>
</tbody>
</table>

NA = Not available

^a Mean value from multiple experiments of same laboratory replicon.

^b Stable chimeric 1b replicons carrying NS5B genes from genotype 2b, 5a or 6a were used for testing.

^c Data from various strains of full length NS5A replicons or chimeric NS5A replicons carrying full-length NS5A genes that contain L31 or M31 polymorphisms.

^d Data from a chimeric NS5A replicon carrying NS5A amino acids 9-184.

Table 7: Activity of sofosbuvir and velpatasvir against transient replicons containing NS5A or NS5B from clinical isolates

<table>
<thead>
<tr>
<th>Replicon genotype</th>
<th>Replicons containing NS5B from clinical isolates</th>
<th>Replicons containing NS5A from clinical isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of clinical isolates</td>
<td>Median sofosbuvir EC50, nM (range)</td>
</tr>
<tr>
<td>1a</td>
<td>67</td>
<td>62 (29-128)</td>
</tr>
<tr>
<td>1b</td>
<td>29</td>
<td>102 (45-170)</td>
</tr>
<tr>
<td>2a</td>
<td>15</td>
<td>29 (14-81)</td>
</tr>
<tr>
<td>2b</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3a</td>
<td>106</td>
<td>81 (24-181)</td>
</tr>
<tr>
<td>4a</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4d</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4r</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5a</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6a</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6e</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA = Not available

The presence of 40% human serum had no effect on the anti-HCV activity of sofosbuvir but reduced the anti-HCV activity of velpatasvir by 13-fold against genotype 1a HCV replicons.

Evaluation of sofosbuvir in combination with velpatasvir showed no antagonistic effect in reducing HCV RNA levels in replicon cells.

Resistance

In cell culture

HCV replicons with reduced susceptibility to sofosbuvir have been selected in cell culture for multiple genotypes including 1b, 2a, 2b, 3a, 4a, 5a and 6a. Reduced susceptibility to sofosbuvir was associated with the primary NS5B substitution S282T in all replicon genotypes examined. Site-directed mutagenesis of the S282T substitution in replicons of genotype 1 to 6 conferred 2- to 18-fold reduced susceptibility to sofosbuvir and reduced the replication viral capacity by 89% to 99% compared to the corresponding wild-type. In biochemical assays, the ability of the active triphosphate of sofosbuvir (GS-461203) to inhibit recombinant NS5B polymerase from genotypes 1b, 2a, 3a and 4a expressing the S282T substitution was reduced compared to its ability to inhibit wild-type recombinant NS5B polymerase, as indicated by a 8.5- to 24-fold increase in the 50% inhibitory concentration (IC50).
In vitro selection of HCV replicons with reduced susceptibility to velpatasvir was performed in cell culture for multiple genotypes including 1a, 1b, 2a, 3a, 4a, 5a and 6a. Variants were selected at NS5A resistance associated positions 24, 28, 30, 31, 32, 58, 92 and 93. The resistance associated variants (RAVs) selected in 2 or more genotypes were F28S, L31I/V and Y93H. Site-directed mutagenesis of known NS5A RAVs showed that substitutions conferring a > 100-fold reduction in velpatasvir susceptibility are M28G, A92K and Y93H/N/R/W in genotype 1a, A92K in genotype 1b, C92T and Y93H/N in genotype 2b, Y93H in genotype 3, and L31V and P32A/L/Q/R in genotype 6. No individual substitutions tested in genotypes 2a, 4a, or 5a conferred a > 100-fold reduction in velpatasvir susceptibility. Combinations of these variants often showed greater reductions in susceptibility to velpatasvir than single RAVs alone.

In clinical studies
Studies in patients without cirrhosis and patients with compensated cirrhosis
In a pooled analysis of patients without cirrhosis or with compensated cirrhosis who received Epclusa for 12 weeks in three Phase 3 studies, 12 patients (2 with genotype 1 and 10 with genotype 3) qualified for resistance analysis due to virologic failure. One additional patient with genotype 3 HCV infection at baseline was reinfected with genotype 1a HCV at virologic failure and was excluded from the virological analysis. No patients with genotype 2, 4, 5, or 6 HCV infection experienced virologic failure.

Of the 2 genotype 1 virologic failure patients, one patient had virus with emergent NS5A RAV Y93N and the other patient had virus with emergent NS5A RAVs L31I/V and Y93H at virologic failure. Both patients had virus at baseline harbouring NS5A RAVs. No NS5B nucleoside inhibitor (NI) RAVs were observed at failure in the 2 patients.

Of the 10 genotype 3 virologic failure patients, Y93H was observed in all 10 patients at failure (6 had Y93H emerge post-treatment and 4 patients had Y93H at baseline and post-treatment). No NS5B NI RAVs were observed at failure in the 10 patients.

Studies in patients with decompensated cirrhosis
In one Phase 3 study in patients with decompensated cirrhosis who received Epclusa + RBV for 12 weeks, 3 patients (1 with genotype 1 and 2 with genotype 3) qualified for resistance analysis due to virologic failure. No patients with genotype 2 or 4 HCV infection in the Epclusa + RBV 12 weeks group experienced virologic failure.

The 1 virologic failure patient with genotype 1 HCV had no NS5A or NS5B RAVs at failure.

Of the 2 genotype 3 virologic failure patients, one had NS5A RAV Y93H emerge at failure. Another patient had virus with Y93H at baseline and virologic failure and also developed low levels (< 5%) of NS5B NI RAVs N142T and E237G at failure. Pharmacokinetic data from this patient was consistent with non-adherence to treatment.

In this study, 2 patients treated with Epclusa for 12 or 24 weeks without ribavirin had emergent NS5B S282T at low levels (< 5%) along with L159F.

Effect of baseline HCV resistance-associated variants on treatment outcome
Studies in patients without cirrhosis and patients with compensated cirrhosis
Analyses were conducted to explore the association between pre-existing baseline NS5A RAVs and treatment outcome for patients without cirrhosis or with compensated cirrhosis in three Phase 3 clinical studies (ASTRAL-1, ASTRAL-2 and ASTRAL-3). Of the 1,035 patients treated with sofosbuvir/velpatasvir in the three Phase 3 clinical studies, 1,023 patients were included in the analysis of NS5A RAVs; 7 patients were excluded as they neither achieved sustained virologic response (SVR12) nor had virologic failure and 5 additional patients were excluded as NS5A gene sequencing failed. In the pooled analysis of the Phase 3 studies, 380/1,023 (37%) patients’ virus had baseline NS5A RAVs. Genotype 2, 4, and 6 HCV-infected patients had a higher prevalence of NS5A RAVs
(70%, 63% and 52%, respectively) compared to genotype 1 (23%), genotype 3 (16%), and genotype 5 (18%) HCV-infected patients.

Baseline RAVs had no relevant impact on SVR12 rates in patients infected with genotype 1, 2, 4, 5 and 6 HCV, as summarised in Table 8. Genotype 3 infected patients with the NS5A RAV Y93H at baseline had a lower SVR12 rate than patients without Y93H after treatment with Epclusa for 12 weeks, as summarised in Table 9. In the ASTRAL-3 study, the Y93H RAV was detected at baseline in 9% of patients treated with Epclusa.

Table 8: SVR12 in patients with or without baseline NS5A RAVs by HCV genotype (studies ASTRAL-1, ASTRAL-2 and ASTRAL-3)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>With any baseline NS5A RAVs</th>
<th>Without baseline NS5A RAVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype 1</td>
<td>97% (73/75)</td>
<td>100% (251/251)</td>
</tr>
<tr>
<td>Genotype 3</td>
<td>88% (38/43)</td>
<td>97% (225/231)</td>
</tr>
<tr>
<td>Genotypes 2, 4, 5 or 6</td>
<td>100% (262/262)</td>
<td>100% (161/161)</td>
</tr>
<tr>
<td>Total</td>
<td>98% (373/380)</td>
<td>99% (637/643)</td>
</tr>
</tbody>
</table>

Table 9: SVR12 in patients with and without baseline Y93H, 1% Cut-off (Resistance Analysis Population Set) ASTRAL 3

<table>
<thead>
<tr>
<th></th>
<th>All Subjects (n = 274)</th>
<th>Cirrhotic (n = 80)</th>
<th>Non-Cirrhotic (n = 197)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall 95% CI</td>
<td>95.3% (263/274) 92.9% to 98.0%</td>
<td>91.3% (73/80) 82.8% to 96.4%</td>
<td>97.9% (190/194) 92.8% to 98.6%</td>
</tr>
<tr>
<td>SVR with Y93H 95% CI</td>
<td>84.0% (21/25) 63.9% to 95.5%</td>
<td>50.0% (2/4) 6.8% to 93.2%</td>
<td>90.5% (19/21) 69.6% to 98.8%</td>
</tr>
<tr>
<td>SVR without Y93H 95% CI</td>
<td>96.4% (242/249) 94.3% to 98.9%</td>
<td>93.4% (71/76) 85.3% to 97.8%</td>
<td>98.8% (171/173) 95.9% to 99.9%</td>
</tr>
</tbody>
</table>

The NS5B NI RAV S282T was not detected in the baseline NS5B sequence of any patient in Phase 3 studies. SVR12 was achieved in all 77 patients who had baseline NS5B NI RAVs including N142T, L159F, E/N237G, C/M289L/I, L320F/I/V, V321A/I, and S282G+V321I.

Studies in patients with decompensated cirrhosis (CPT Class B)

Analyses were conducted to explore the association between pre-existing baseline NS5A RAVs and treatment outcome for patients with decompensated cirrhosis in one Phase 3 study (ASTRAL-4). Of the 87 patients treated with Epclusa + RBV, 85 patients were included in the analysis of NS5A RAVs; 2 patients were excluded as they neither achieved SVR12 nor had virologic failure. Among the patients who received treatment with Epclusa + RBV for 12 weeks, 29% (25/85) of patients had baseline virus with NS5A RAVs: 29% (19/66), 75% (3/4), 15% (2/13), and 50% (1/2) for patients with genotype 1, 2, 3 and 4 HCV, respectively.

SVR12 in patients with or without baseline NS5A RAVs in the Epclusa + RBV 12 week group for this study is shown in Table 10.

Table 10: SVR12 in patients with or without baseline NS5A RAVs by HCV genotype (study ASTRAL-4)

<table>
<thead>
<tr>
<th></th>
<th>Epclusa + RBV 12 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>With any baseline NS5A RAVs</td>
<td>100% (19/19) 50% (1/2) 100% (4/4)</td>
</tr>
<tr>
<td>Without baseline NS5A RAVs</td>
<td>98% (46/47) 91% (10/11) 100% (2/2)</td>
</tr>
</tbody>
</table>
The single genotype 3 patient who had baseline NS5A RAVs and failed to achieve SVR12 had NS5A substitution Y93H at baseline; pharmacokinetic data from this patient was consistent with non-adherence to treatment.

Three patients in the Epclusa + RBV 12 week group had baseline NS5B NI RAVs (N142T and L159F) and all three patients achieved SVR12.

Paediatric population

The presence of NS5A and NS5B RAVs did not impact treatment outcome; all patients with baseline NS5A (n=29) or NS5B NI (n=6) RAVs achieved SVR following 12 weeks treatment with Epclusa.

Cross-resistance

In vitro data suggests that the majority of NS5A RAVs that confer resistance to ledipasvir and daclatasvir remained susceptible to velpatasvir. Velpatasvir was fully active against the sofosbuvir resistance-associated substitution S282T in NS5B while all velpatasvir resistance-associated substitutions in NS5A were fully susceptible to sofosbuvir. Both sofosbuvir and velpatasvir were fully active against substitutions associated with resistance to other classes of direct-acting antivirals with different mechanisms of actions, such as NS5B non-nucleoside inhibitors and NS3 protease inhibitors. The efficacy of Epclusa has not been assessed in patients who have previously failed treatment with other regimens that include an NS5A inhibitor.

Clinical efficacy and safety

The efficacy of Epclusa was evaluated in three Phase 3 studies in patients with genotype 1 to 6 HCV infection with or without compensated cirrhosis, one Phase 3 study in patients with genotype 1 to 6 HCV infection with decompensated cirrhosis, one Phase 3 study in HCV/HIV-1 co-infected patients with genotype 1 to 6 HCV infection and one Phase 2 study in patients with HCV infection and ESRD requiring dialysis, as summarised in Table 11.

Table 11: Studies conducted with Epclusa in patients with genotype 1, 2, 3, 4, 5 or 6 HCV infection

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Study arms (Number of patients treated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTRAL-1</td>
<td>Genotype 1, 2, 4, 5 and 6 TN and TE, without cirrhosis or with compensated cirrhosis</td>
<td>Epclusa 12 weeks (624) Placebo 12 weeks (116)</td>
</tr>
<tr>
<td>ASTRAL-2</td>
<td>Genotype 2 TN and TE, without cirrhosis or with compensated cirrhosis</td>
<td>Epclusa 12 weeks (134) SOF+RBV 12 weeks (132)</td>
</tr>
<tr>
<td>ASTRAL-3</td>
<td>Genotype 3 TN and TE, without cirrhosis or with compensated cirrhosis</td>
<td>Epclusa 12 weeks (277) SOF+RBV 24 weeks (275)</td>
</tr>
<tr>
<td>ASTRAL-4</td>
<td>Genotype 1, 2, 3, 4, 5 and 6 TN and TE, with CPT Class B decompensated cirrhosis</td>
<td>Epclusa 12 weeks (90) Epclusa + RBV 12 weeks (87) Epclusa 24 weeks (90)</td>
</tr>
<tr>
<td>ASTRAL-5</td>
<td>Genotype 1, 2, 3, 4, 5 and 6 TN and TE, without cirrhosis or with compensated cirrhosis, with HCV/HIV-1 co-infection</td>
<td>Epclusa 12 weeks (106)</td>
</tr>
<tr>
<td>GS-US-342-4062</td>
<td>TN and TE with or without cirrhosis, with ESRD requiring dialysis</td>
<td>Epclusa 12 weeks (59)</td>
</tr>
</tbody>
</table>

TN = treatment-naïve patients; TE = treatment-experienced patients (including those who have failed a peginterferon alfa + ribavirin based regimen with or without an HCV protease inhibitor)

The ribavirin dose was weight-based (1,000 mg daily administered in two divided doses for patients < 75 kg and 1,200 mg for those ≥ 75 kg) and administered in two divided doses when used in
combination with sofosbuvir in the ASTRAL-2 and ASTRAL-3 studies or in combination with Epclusa in the ASTRAL-4 study. Ribavirin dose adjustments were performed according to the ribavirin prescribing information. Serum HCV RNA values were measured during the clinical studies using the COBAS AmpliPrep/COBAS Taqman HCV test (version 2.0) with a lower limit of quantification (LLOQ) of 15 IU/mL. Sustained virologic response (SVR12), defined as HCV RNA less than LLOQ at 12 weeks after the cessation of treatment, was the primary endpoint to determine the HCV cure rate.

Clinical studies in patients without cirrhosis and patients with compensated cirrhosis

Genotype 1, 2, 4, 5 and 6 HCV-infected adults – ASTRAL-1 (study 1138)

ASTRAL-1 was a randomised, double-blind, placebo-controlled study that evaluated 12 weeks of treatment with Epclusa compared with 12 weeks of placebo in patients with genotype 1, 2, 4, 5, or 6 HCV infection. Patients with genotype 1, 2, 4 or 6 HCV infection were randomised in a 5:1 ratio to treatment with Epclusa for 12 weeks or placebo for 12 weeks. Patients with genotype 5 HCV infection were enrolled to the Epclusa group. Randomisation was stratified by HCV genotype (1, 2, 4, 6, and indeterminate) and the presence or absence of cirrhosis.

Demographics and baseline characteristics were balanced between the Epclusa and placebo group. Of the 740 treated patients, the median age was 56 years (range: 18 to 82); 60% of the patients were male; 79% were White, 9% were Black; 21% had a baseline body mass index of at least 30 kg/m²; the proportions of patients with genotype 1, 2, 4, 5, or 6 HCV infection were 53%, 17%, 19%, 5% and 7%, respectively; 69% had non-CC IL28B alleles (CT or TT); 74% had baseline HCV RNA levels of at least 800,000 IU/mL; 19% had compensated cirrhosis; and 32% were treatment-experienced.

Table 12 presents the SVR12 for the ASTRAL-1 study by HCV genotypes. No patients in the placebo group achieved SVR12.

Table 12: SVR12 in study ASTRAL-1 by HCV genotype

<table>
<thead>
<tr>
<th></th>
<th>Epclusa 12 weeks (n = 624)</th>
<th>GT-1</th>
<th>GT-2 (n = 104)</th>
<th>GT-4 (n = 116)</th>
<th>GT-5 (n = 35)</th>
<th>GT-6 (n = 41)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (all GTs) (n = 624)</td>
<td>GT-1a (n = 210)</td>
<td>GT-1b (n = 118)</td>
<td>Total (n = 328)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVR12</td>
<td>99% (618/624)</td>
<td>98% (206/210)</td>
<td>99% (117/118)</td>
<td>98% (323/328)</td>
<td>100% (104/104)</td>
<td>100% (116/116)</td>
</tr>
<tr>
<td>Outcome for patients without SVR12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-treatment virologic failure</td>
<td>0/624</td>
<td>0/210</td>
<td>0/118</td>
<td>0/328</td>
<td>0/104</td>
<td>0/116</td>
</tr>
<tr>
<td>Relapse<sup>a</sup></td>
<td></td>
<td><1% (2/623)</td>
<td><1% (1/209)</td>
<td>1% (1/118)</td>
<td>1% (2/327)</td>
<td>0/104</td>
</tr>
<tr>
<td>Other<sup>b</sup></td>
<td>1% (4/624)</td>
<td>1% (3/210)</td>
<td>0/118</td>
<td>1% (3/328)</td>
<td>0/104</td>
<td>0/116</td>
</tr>
</tbody>
</table>

GT = genotype

^a The denominator for relapse is the number of patients with HCV RNA < LLOQ at their last on-treatment assessment.

^b Other includes patients who did not achieve SVR12 and did not meet virologic failure criteria.

Genotype 2 HCV-infected adults – ASTRAL-2 (study 1139)

ASTRAL-2 was a randomised, open-label study that evaluated 12 weeks of treatment with Epclusa compared with 12 weeks of treatment with SOF+RBV in patients with genotype 2 HCV infection. Patients were randomised in a 1:1 ratio to treatment with Epclusa for 12 weeks or SOF+RBV for 12 weeks. Randomisation was stratified by the presence or absence of cirrhosis and prior treatment experience (treatment-naïve versus treatment-experienced).
Demographics and baseline characteristics were balanced across the two treatment groups. Of the 266 treated patients, the median age was 58 years (range: 23 to 81); 59% of the patients were male; 88% were White, 7% were Black; 33% had a baseline body mass index of at least 30 kg/m²; 62% had non-CC IL28B alleles (CT or TT); 80% had baseline HCV RNA levels of at least 800,000 IU/mL; 14% had compensated cirrhosis and 15% were treatment-experienced.

Table 13 presents the SVR12 for the ASTRAL-2 study.

Table 13: SVR12 in study ASTRAL-2 (HCV genotype 2)

<table>
<thead>
<tr>
<th>Outcome for patients without SVR12</th>
<th>Epclusa 12 weeks (n = 134)</th>
<th>SOF+RBV 12 weeks (n = 132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-treatment virologic failure</td>
<td>0/134</td>
<td>0/132</td>
</tr>
<tr>
<td>Relapse</td>
<td>0/133</td>
<td>5% (6/132)</td>
</tr>
<tr>
<td>Other</td>
<td>1% (1/134)</td>
<td>2% (2/132)</td>
</tr>
</tbody>
</table>

a The denominator for relapse is the number of patients with HCV RNA < LLOQ at their last on-treatment assessment.

b Other includes patients who did not achieve SVR12 and did not meet virologic failure criteria.

Treatment with Epclusa for 12 weeks demonstrated the statistical superiority (p = 0.018) over treatment with SOF+RBV for 12 weeks (treatment difference +5.2%; 95% confidence interval: +0.2% to +10.3%).

Genotype 3 HCV-infected adults – ASTRAL-3 (study 1140)

ASTRAL-3 was a randomised, open-label study that evaluated 12 weeks of treatment with Epclusa compared with 24 weeks of treatment with SOF+RBV in patients with genotype 3 HCV infection. Patients were randomised in a 1:1 ratio to treatment with Epclusa for 12 weeks or SOF+RBV for 24 weeks. Randomisation was stratified by the presence or absence of cirrhosis and prior treatment experience (treatment-naïve versus treatment-experienced).

Demographics and baseline characteristics were balanced across the two treatment groups. Of the 552 treated patients, the median age was 52 years (range: 19 to 76); 62% of the patients were male; 89% were White, 9% were Asian; 1% were Black; 20% had a baseline body mass index of at least 30 kg/m²; 61% had non-CC IL28B alleles (CT or TT); 70% had baseline HCV RNA levels of at least 800,000 IU/mL, 30% had compensated cirrhosis and 26% were treatment-experienced.

Table 14 presents the SVR12 for the ASTRAL-3 study.

Table 14: SVR12 in study ASTRAL-3 (HCV genotype 3)

<table>
<thead>
<tr>
<th>Outcome for patients without SVR12</th>
<th>Epclusa 12 weeks (n = 277)</th>
<th>SOF+RBV 24 weeks (n = 275)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-treatment virologic failure</td>
<td>0/277</td>
<td>< 1% (1/275)</td>
</tr>
<tr>
<td>Relapse</td>
<td>4% (11/276)</td>
<td>14% (38/272)</td>
</tr>
<tr>
<td>Other</td>
<td>1% (2/277)</td>
<td>5% (15/275)</td>
</tr>
</tbody>
</table>

a The denominator for relapse is the number of patients with HCV RNA < LLOQ at their last on-treatment assessment.

b Other includes patients who did not achieve SVR12 and did not meet virologic failure criteria.

Treatment with Epclusa for 12 weeks demonstrated the statistical superiority (p < 0.001) compared to treatment with SOF+RBV for 24 weeks (treatment difference +14.8%; 95% confidence interval: +9.6% to +20.0%).

SVR12 for selected subgroups are presented in Table 15.
Table 15: SVR12 for selected subgroups in study ASTRAL-3 (HCV genotype 3)

<table>
<thead>
<tr>
<th></th>
<th>Epclusa 12 weeks</th>
<th>Treatment-naïve (n = 206)</th>
<th>Treatment-experienced (n = 71)</th>
<th>SOF+RBV 24 weeksa</th>
<th>Treatment-naïve (n = 201)</th>
<th>Treatment-experienced (n = 69)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without cirrhosis</td>
<td>98% (160/163)</td>
<td>91% (31/34)</td>
<td>90% (141/156)</td>
<td>71% (22/31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With cirrhosis</td>
<td>93% (40/43)</td>
<td>89% (33/37)</td>
<td>73% (33/45)</td>
<td>58% (22/38)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Five patients with missing cirrhosis status in the SOF+RBV 24 week group were excluded from this subgroup analysis.

Clinical studies in patients with decompensated cirrhosis – ASTRAL-4 (study 1137)

ASTRAL-4 was a randomised, open-label study in patients with genotype 1, 2, 3, 4, 5 or 6 HCV infection and CPT Class B cirrhosis. Patients were randomised in a 1:1:1 ratio to treatment with Epclusa for 12 weeks, Epclusa + RBV for 12 weeks or Epclusa for 24 weeks. Randomisation was stratified by HCV genotype (1, 2, 3, 4, 5, 6 and indeterminate).

Demographics and baseline characteristics were balanced across the treatment groups. Of the 267 treated patients, the median age was 59 years (range: 40 to 73); 70% of the patients were male; 90% were White, 6% were Black; 42% had a baseline body mass index of at least 30 kg/m2. The proportions of patients with genotype 1, 2, 3, 4 or 6 HCV were 78%, 4%, 15%, 3%, and < 1% (1 patient), respectively. No patients with genotype 5 HCV infection were enrolled. 76% of the patients had non-CC IL28B alleles (CT or TT); 56% had baseline HCV RNA levels of at least 800,000 IU/mL, 55% were treatment-experienced; 90% and 95% of patients had CPT Class B cirrhosis and Model for End Stage Liver Disease (MELD) score ≤ 15 at baseline, respectively.

Table 16 presents the SVR12 for the ASTRAL-4 study by HCV genotype.

Table 16: SVR12 in study ASTRAL-4 by HCV genotype

<table>
<thead>
<tr>
<th></th>
<th>Epclusa 12 weeks (n = 90)</th>
<th>Epclusa + RBV 12 weeks (n = 87)</th>
<th>Epclusa 24 weeks (n = 90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall SVR12</td>
<td>83% (75/90)</td>
<td>94% (82/87)</td>
<td>86% (77/90)</td>
</tr>
<tr>
<td>Genotype 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotype 1a</td>
<td>88% (60/68)</td>
<td>96% (65/68)</td>
<td>92% (65/71)</td>
</tr>
<tr>
<td>Genotype 1b</td>
<td>89% (44/49)</td>
<td>94% (51/54)</td>
<td>93% (51/55)</td>
</tr>
<tr>
<td>Genotype 3</td>
<td>100% (16/16)</td>
<td>100% (14/14)</td>
<td>88% (14/16)</td>
</tr>
<tr>
<td>Genotype 2, 4 and 6</td>
<td>100% (8/8)a</td>
<td>100% (6/6)b</td>
<td>86% (6/7)c</td>
</tr>
<tr>
<td></td>
<td>a n = 4 for genotype 2 and n = 4 for genotype 4.</td>
<td>b n = 4 for genotype 2 and n = 2 for genotype 4.</td>
<td>c n = 4 for genotype 2, n = 2 for genotype 4 and n = 1 for genotype 6.</td>
</tr>
</tbody>
</table>

Table 17 presents the virologic outcome for patients with genotype 1 or 3 HCV infection in the ASTRAL-4 study.

No patients with genotype 2, 4 or 6 HCV infection experienced virologic failure.
Table 17: Virologic outcome for patients with genotype 1 and 3 HCV infection in study ASTRAL-4

<table>
<thead>
<tr>
<th>Virologic failure (relapse and on-treatment failure)</th>
<th>Epclusa 12 weeks</th>
<th>Epclusa + RBV 12 weeks</th>
<th>Epclusa 24 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype 1*</td>
<td>7% (5/68)</td>
<td>1% (1/68)</td>
<td>4% (3/71)</td>
</tr>
<tr>
<td>Genotype 1a</td>
<td>6% (3/50)</td>
<td>2% (1/54)</td>
<td>4% (2/55)</td>
</tr>
<tr>
<td>Genotype 1b</td>
<td>11% (2/18)</td>
<td>0% (0/14)</td>
<td>6% (1/16)</td>
</tr>
<tr>
<td>Genotype 3</td>
<td>43% (6/14)</td>
<td>15% (2/13)</td>
<td>42% (5/12)</td>
</tr>
<tr>
<td>Other\d</td>
<td>5% (4/82)</td>
<td>2% (2/81)</td>
<td>5% (4/83)</td>
</tr>
</tbody>
</table>

a No patients with genotype 1 HCV had on-treatment virologic failure.
b One patient had on-treatment virologic failure; pharmacokinetic data from this patient was consistent with non-adherence to treatment.
c One patient had on-treatment virologic failure.
d Other includes patients who did not achieve SVR12 and did not meet virologic failure criteria.

Changes in the parameters found in the CPT score system in patients achieving SVR12 in ASTRAL-4 (all 3 regimens) are shown in Table 18.

Table 18: Changes in CPT score parameters from baseline to week 12 and 24 post-treatment in patients achieving SVR12, ASTRAL-4

<table>
<thead>
<tr>
<th>Post-treatment Week 12 (N = 236), % (n/N)</th>
<th>Albumin</th>
<th>Bilirubin</th>
<th>INR</th>
<th>Ascites</th>
<th>Encephalopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased score (Improvement)</td>
<td>34.5% (79/229)</td>
<td>17.9% (41/229)</td>
<td>2.2% (5/229)</td>
<td>7.9% (18/229)</td>
<td>5.2% (12/229)</td>
</tr>
<tr>
<td>No change</td>
<td>60.3% (138/229)</td>
<td>76.4% (175/229)</td>
<td>96.5% (221/229)</td>
<td>89.1% (204/229)</td>
<td>91.3% (209/229)</td>
</tr>
<tr>
<td>Increased score (Worsening)</td>
<td>5.2% (12/229)</td>
<td>5.7% (13/229)</td>
<td>1.3% (3/229)</td>
<td>3.1% (7/229)</td>
<td>3.5% (8/229)</td>
</tr>
<tr>
<td>No assessment</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Post-treatment Week 24 (N = 236), % (n/N)

<table>
<thead>
<tr>
<th>Post-treatment Week 24 (N = 236), % (n/N)</th>
<th>Albumin</th>
<th>Bilirubin</th>
<th>INR</th>
<th>Ascites</th>
<th>Encephalopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased score (Improvement)</td>
<td>39.4% (84/213)</td>
<td>16.4% (35/213)</td>
<td>2.3% (5/213)</td>
<td>15.0% (32/213)</td>
<td>9.4% (20/213)</td>
</tr>
<tr>
<td>No change</td>
<td>54.0% (115/213)</td>
<td>80.8% (172/213)</td>
<td>94.8% (202/213)</td>
<td>81.2% (173/213)</td>
<td>88.3% (188/213)</td>
</tr>
<tr>
<td>Increased score (Worsening)</td>
<td>6.6% (14/213)</td>
<td>2.8% (6/213)</td>
<td>2.8% (6/213)</td>
<td>3.8% (8/213)</td>
<td>2.3% (5/213)</td>
</tr>
<tr>
<td>No assessment</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>

Note: Baseline frequency of ascites was: 20% none, 77% mild/moderate, 3% severe
Baseline frequency of encephalopathy was: 38% none, 62% grade 1-2.

Clinical studies in patients with HCV/HIV-1 Co-infection – ASTRAL-5 (study 1202)
ASTRAL-5 evaluated 12 weeks of treatment with Epclusa in patients with genotype 1, 2, 3, or 4 HCV infection who were co-infected with HIV-1 (HCV genotype 5 and 6 allowed, but no such patients were included). Patients were on a stable HIV-1 antiretroviral therapy that included emtricitabine/tenofovir disoproxil fumarate or abacavir/lamivudine administered with a ritonavir boosted protease inhibitor (atazanavir, darunavir, or lopinavir), rilpivirine, raltegravir or emtricitabine/tenofovir disoproxil fumarate/elvitegravir/cobicistat.

Of the 106 treated patients, the median age was 57 years (range: 25 to 72); 86% of the patients were male; 51% were white; 45% were black; 22% had a baseline body mass index ≥ 30 kg/m²; 19 patients (18%) had compensated cirrhosis; and 29% were treatment experienced. The overall mean CD4+ count was 598 cells/µL (range: 183–1513 cells/µL).

Table 19 presents the SVR12 for the ASTRAL-5 study by HCV genotype.
Table 19: SVR12 in study ASTRAL-5 by HCV genotype

<table>
<thead>
<tr>
<th></th>
<th>Epclusa 12 weeks (n = 106)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (all GTs)</td>
</tr>
<tr>
<td></td>
<td>(n = 106)</td>
</tr>
<tr>
<td>SVR12</td>
<td>95% (101/106)</td>
</tr>
</tbody>
</table>

Outcome for patients without SVR

On-treatment virologic failure	0/106	0/66	0/12	0/78	0/11	0/12	0/5
Relapse^a	2% (2/103)	3% (2/65)	0/11	3% (2/76)	0/11	0/11	0/5
Other^b	3% (3/106)	2% (1/66)	8% (1/12)	3% (2/78)	0/11	8% (1/12)	0/5

GT = genotype
^a The denominator for relapse is the number of patients with HCV RNA < LLOQ at their last on-treatment assessment.
^b Other includes patients who did not achieve SVR12 and did not meet virologic failure criteria.

SVR12 was achieved by 19/19 patients with cirrhosis. No patient had HIV-1 rebound during the study, and CD4+ counts were stable during treatment.

Clinical studies in patients with Renal Impairment – study 4062

Study 4062 was an open-label clinical study that evaluated 12 weeks of treatment with Epclusa in 59 HCV-infected patients with ESRD requiring dialysis. The proportions of patients with genotype 1, 2, 3, 4, 6 or indeterminate HCV infection were 42%, 12%, 27%, 7%, 3%, and 9%, respectively. At baseline, 29% of patients had cirrhosis, 22% were treatment experienced, 32% had received a kidney transplant, 92% were on haemodialysis, and 8% were on peritoneal dialysis; mean duration on dialysis was 7.3 years (range: 0 to 40 years). The overall SVR rate was 95% (56/59); of the three patients that did not achieve SVR12, one had completed Epclusa treatment and relapsed and two did not meet virologic failure criteria.

Paediatric population

The efficacy of 12 weeks of treatment with sofosbuvir/velpatasvir in HCV-infected paediatric patients aged 3 years and older was evaluated in a Phase 2, open-label clinical study in 214 patients with HCV infection.

Patients aged 12 to < 18 Years:

Sofosbuvir/velpatasvir was evaluated in 102 patients aged 12 to <18 years with genotype 1, 2, 3, 4, or 6 HCV infection. A total of 80 patients (78%) were treatment-naïve and 22 patients (22%) were treatment-experienced. The median age was 15 years (range: 12 to 17); 51% of the patients were female; 73% were White, 9% were Black, and 11% were Asian; 14% were Hispanic/Latino; mean body mass index was 22.7 kg/m² (range: 12.9 to 48.9 kg/m²); mean weight was 61 kg (range 22 to 147 kg); 58% had baseline HCV RNA levels greater than or equal to 800,000 IU/mL; the proportions of subjects with genotype 1, 2, 3, 4, or 6 HCV infection were 74%, 6%, 12%, 2%, and 6%, respectively; no patients had known cirrhosis. The majority of patients (89%) had been infected through vertical transmission.

The SVR rate was 95% overall (97/102), 93% (71/76) in patients with genotype 1 HCV infection, and 100% in patients with genotype 2 (6/6), genotype 3 (12/12), genotype 4 (2/2), and genotype 6 (6/6) HCV infection. One patient who discontinued treatment early relapsed; the other four patients who did not achieve SVR12 did not meet virologic failure criteria (e.g., lost to follow-up).

Patients aged 6 to < 12 Years:

Sofosbuvir/velpatasvir was evaluated in 71 patients aged 6 to <12 years with genotype 1, 2, 3, and 4 HCV infection. A total of 67 patients (94%) were treatment-naïve and 4 patients (6%) were treatment-
The median age was 8 years (range: 6 to 11); 54% of the patients were female; 90% were White, 6% were Black, and 1% were Asian; 10% were Hispanic/Latino; mean body mass index was 17.4 kg/m² (range: 12.8 to 30.9 kg/m²); mean weight was 30 kg (range 18 to 78 kg); 48% had baseline HCV RNA levels greater than or equal to 800,000 IU per mL; the proportions of patients with genotype 1, 2, 3, or 4 HCV infection were 76%, 3%, 15%, and 6%, respectively; no patients had known cirrhosis. The majority of patients (94%) had been infected through vertical transmission.

The SVR rate was 93% overall (66/71), 93% (50/54) in patients with genotype 1 HCV infection, 91% (10/11) in patients with genotype 3 HCV infection, and 100% in patients with genotype 2 (2/2) and genotype 4 (4/4) HCV infection. One subject had on-treatment virologic failure; the other four patients who did not achieve SVR12 did not meet virologic failure criteria (e.g., lost to follow-up).

Patients aged 3 to < 6 Years:
Sofosbuvir/velpatasvir was evaluated in 41 treatment-naïve subjects 3 years to <6 years of age with genotype 1, 2, 3, and 4 HCV infection. The median age was 4 years (range: 3 to 5); 59% of the subjects were female; 78% were White and 7% were Black; 10% were Hispanic/Latino; mean body mass index was 17.0 kg/m² (range: 13.9 to 22.0 kg/m²); mean weight was 19 kg (range: 13 to 35 kg); 49% had baseline HCV RNA levels ≥ 800,000 IU per mL; the proportions of subjects with genotype 1, 2, 3, or 4 HCV infection were 78%, 15%, 5%, and 2%, respectively; no subjects had known cirrhosis. The majority of subjects (98%) had been infected through vertical transmission.

The SVR rate was 83% overall (34/41), 88% (28/32) in subjects with genotype 1 HCV infection, 50% (3/6) in subjects with genotype 2 HCV infection, and 100% in subjects with genotype 3 (2/2) and genotype 4 (1/1) HCV infection. No subject experienced on-treatment virologic failure or relapse. The seven subjects who did not achieve SVR12 did not meet virologic failure criteria (e.g., lost to follow-up).

Elderly
Clinical studies of Epclusa included 156 patients aged 65 and over (12% of total number of patients in the Phase 3 clinical studies). The response rates observed for patients ≥ 65 years of age were similar to that of patients <65 years of age, across treatment groups.

5.2 Pharmacokinetic properties

Absorption
The pharmacokinetic properties of sofosbuvir, GS-331007 and velpatasvir have been evaluated in healthy adult subjects and in patients with chronic hepatitis C. Following oral administration of Epclusa, sofosbuvir was absorbed quickly and the peak median plasma concentration was observed 1 hour post-dose. Median peak plasma concentration of GS-331007 was observed 3 hours post-dose. Velpatasvir median peak concentrations were observed at 3 hours post-dose.

Based on the population pharmacokinetic analysis in HCV-infected patients, mean steady-state AUC0-24 for sofosbuvir (n = 982), GS-331007 (n = 1,428) and velpatasvir (n = 1,425) were 1,260, 13,970 and 2,970 ng•h/mL, respectively. Steady-state Cmax for sofosbuvir, GS-331007 and velpatasvir were 566, 868 and 259 ng/mL, respectively. Sofosbuvir and GS-331007 AUC0-24 and Cmax were similar in healthy adult subjects and patients with HCV infection. Relative to healthy subjects (n = 331), velpatasvir AUC0-24 and Cmax were 37% lower and 41% lower, respectively in HCV-infected patients.

Effects of food
Relative to fasting conditions, the administration of a single dose of Epclusa with a moderate fat (~600 kcal, 30% fat) or high fat (~800 kcal, 50% fat) meal resulted in a 34% and 21% increase in velpatasvir AUC0-Inf, respectively, and a 31% and 5% increase in velpatasvir Cmax, respectively. The moderate or high fat meal increased sofosbuvir AUC0-Inf by 60% and 78%, respectively, but did not substantially affect the sofosbuvir Cmax. The moderate or high fat meal did not alter GS-331007 AUC0-Inf, but resulted in a 25% and 37% decrease in its Cmax, respectively. The response rates in
Phase 3 studies were similar in HCV-infected patients who received Epclusa with food or without food. Epclusa can be administered without regard to food.

Distribution

Sofosbuvir is approximately 61-65% bound to human plasma proteins and the binding is independent of drug concentration over the range of 1 µg/mL to 20 µg/mL. Protein binding of GS-331007 was minimal in human plasma. After a single 400 mg dose of [14C]-sofosbuvir in healthy subjects, the blood to plasma ratio of [14C]-radioactivity was approximately 0.7.

Velpatasvir is > 99.5% bound to human plasma proteins and binding is independent of drug concentration over the range of 0.09 µg/mL to 1.8 µg/mL. After a single 100 mg dose of [14C]-velpatasvir in healthy subjects, the blood to plasma ratio of [14C]-radioactivity ranged between 0.52 and 0.67.

Biotransformation

Sofosbuvir is extensively metabolised in the liver to form the pharmacologically active nucleoside analog triphosphate GS-461203. The metabolic activation pathway involves sequential hydrolysis of the carboxyl ester moiety catalysed by human cathepsin A (CatA) or carboxylesterase 1 (CES1) and phosphoramidate cleavage by histidine triad nucleotide-binding protein 1 (HINT1) followed by phosphorylation by the pyrimidine nucleotide biosynthesis pathway. Dephosphorylation results in the formation of nucleoside metabolite GS-331007 that cannot be efficiently rephosphorylated and lacks anti-HCV activity in vitro. Sofosbuvir and GS-331007 are not substrates or inhibitors of UGT1A1 or CYP3A4, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP2D6 enzymes. After a single 400 mg oral dose of [14C]-sofosbuvir, GS-331007 accounted for approximately > 90% of total systemic exposure.

Velpatasvir is a substrate of CYP2B6, CYP2C8, and CYP3A4 with slow turnover. Following a single dose of 100 mg [14C]-velpatasvir, the majority (> 98%) of radioactivity in plasma was parent drug. The monohydroxylated and desmethylated velpatasvir were the metabolites identified in human plasma. Unchanged velpatasvir is the major species present in faeces.

Elimination

Following a single 400 mg oral dose of [14C]-sofosbuvir, mean total recovery of the [14C]-radioactivity was greater than 92%, consisting of approximately 80%, 14%, and 2.5% recovered in urine, faeces, and expired air, respectively. The majority of the sofosbuvir dose recovered in urine was GS-331007 (78%) while 3.5% was recovered as sofosbuvir. These data indicate that renal clearance is the major elimination pathway for GS-331007. The median terminal half-lives of sofosbuvir and GS-331007 following administration of Epclusa were 0.5 and 25 hours, respectively.

Following a single 100 mg oral dose of [14C]-velpatasvir, mean total recovery of the [14C]-radioactivity was 95%, consisting of approximately 94% and 0.4% recovered from the faeces and urine, respectively. Unchanged velpatasvir was the major species in faeces accounting for a mean of 77% of the administered dose, followed by monohydroxylated velpatasvir (5.9%) and desmethylated velpatasvir (3.0%). These data indicate that biliary excretion of parent drug was a major route of elimination for velpatasvir. The median terminal half-life of velpatasvir following administration of Epclusa was approximately 15 hours.

Linearity/non-linearity

Velpatasvir AUC increases in a nearly dose proportional manner over the dose range of 25 mg to 150 mg. Sofosbuvir and GS-331007 AUCs are near dose-proportional over the dose range of 200 mg to 1,200 mg.
In vitro potential for sofosbuvir/velpatasvir drug-drug interactions

Sofosbuvir and velpatasvir are substrates of drug transporters P-gp and BCRP while GS-331007 is not. Velpatasvir is also a substrate of OATP1B. In vitro, slow metabolic turnover of velpatasvir by CYP2B6, CYP2C8, and CYP3A4 was observed.

Velpatasvir is an inhibitor of drug transporter P-gp, BCRP, OATP1B1 and OATP1B3 and its involvement in drug interactions with these transporters is primarily limited to the process of absorption. At clinically relevant plasma concentration, velpatasvir is not an inhibitor of hepatic transporters bile salt export pump (BSEP), sodium taurocholate cotransporter protein (NTCP), OATP2B1, OATP1A2 or organic cation transporter (OCT) 1, renal transporters OCT2, OAT1, OAT3, multidrug resistance-associated protein 2 (MRP2) or multidrug and toxin extrusion protein (MATE) 1, or CYP or uridine glucuronosyltransferase (UGT) 1A1 enzymes.

Sofosbuvir and GS-331007 are not inhibitors of drug transporters P-gp, BCRP, MRP2, BSEP, OATP1B1, OATP1B3 and OCT1. GS-331007 is not an inhibitor of OAT1, OCT2, and MATE1.

Pharmacokinetics in special populations

Race and gender
No clinically relevant pharmacokinetic differences due to race or gender have been identified for sofosbuvir, GS-331007 or velpatasvir.

Elderly
Population pharmacokinetic analysis in HCV-infected patients showed that within the age range (18 to 82 years) analysed, age did not have a clinically relevant effect on the exposure to sofosbuvir, GS-331007, or velpatasvir.

Renal impairment
A summary of the effect of varying degrees of renal impairment (RI) on the exposures of the components of Epclusa compared to subjects with normal renal function, as described in the text below, are provided in Table 20.

Table 20: Effect of Varying Degrees of Renal Impairment on Exposures (AUC) of Sofosbuvir, GS-331007, and Velpatasvir Compared to Subjects with Normal Renal Function

<table>
<thead>
<tr>
<th></th>
<th>HCV-Negative Subjects</th>
<th>HCV-Infected Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mild RI (eGFR ≥50 and <80 mL/min/1.73 m²)</td>
<td>Moderate RI (eGFR ≥30 and <50 mL/min/1.73 m²)</td>
</tr>
<tr>
<td>Sofosbuvir</td>
<td>1.6-fold†</td>
<td>2.1-fold†</td>
</tr>
<tr>
<td>GS-331007</td>
<td>1.6-fold†</td>
<td>1.9-fold†</td>
</tr>
<tr>
<td>Velpatasvir</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The pharmacokinetics of sofosbuvir was studied in HCV negative adult patients with mild (eGFR ≥ 50 and < 80 mL/min/1.73 m²), moderate (eGFR ≥ 30 and < 50 mL/min/1.73 m²), severe renal impairment (eGFR < 30 mL/min/1.73 m²) and patients with ESRD requiring haemodialysis following a single 400 mg dose of sofosbuvir, relative to patients with normal renal function (eGFR > 80 mL/min/1.73 m²). GS-331007 is efficiently removed by haemodialysis with an extraction coefficient of approximately 53%. Following a single 400 mg dose of sofosbuvir, a 4 hour haemodialysis removed 18% of administered dose.

In HCV-infected patients with severe renal impairment treated with sofosbuvir 200 mg with ribavirin (n=10) or sofosbuvir 400 mg with ribavirin (n=10) for 24 weeks or ledipasvir/sofosbuvir 90/400 mg
(n=18) for 12 weeks, the pharmacokinetics of sofosbuvir and GS-331007 were consistent with that observed in HCV negative adult patients with severe renal impairment.

The pharmacokinetics of velpatasvir was studied with a single dose of 100 mg velpatasvir in HCV negative patients with severe renal impairment (eGFR < 30 mL/min by Cockcroft-Gault).

The pharmacokinetics of sofosbuvir, GS-331007, and velpatasvir were studied in HCV-infected patients with ESRD requiring dialysis treated with Epclusa (n=59) for 12 weeks, and compared to patients without renal impairment in the sofosbuvir/velpatasvir Phase 2/3 studies.

Hepatic impairment

The pharmacokinetics of sofosbuvir was studied following 7-day dosing of 400 mg sofosbuvir in HCV-infected adult patients with moderate and severe hepatic impairment (CPT Class B and C). Relative to patients with normal hepatic function, the sofosbuvir AUC0-24 was 126% and 143% higher in moderate and severe hepatic impairment, while the GS-331007 AUC0-24 was 18% and 9% higher, respectively. Population pharmacokinetics analysis in HCV-infected adult patients indicated that cirrhosis (including decompensated cirrhosis) had no clinically relevant effect on the exposure to sofosbuvir and GS-331007.

The pharmacokinetics of velpatasvir was studied with a single dose of 100 mg velpatasvir in HCV negative adult patients with moderate and severe hepatic impairment (CPT Class B and C). Compared to subjects with normal hepatic function velpatasvir total plasma exposure (AUCinf) was similar in patients with moderate or severe hepatic impairment. Population pharmacokinetics analysis in HCV-infected patients indicated that cirrhosis (including decompensated cirrhosis) had no clinically relevant effect on the exposure to velpatasvir (see section 4.2).

Body weight

In adults, body weight did not have a clinically significant effect on sofosbuvir or velpatasvir exposure according to a population pharmacokinetic analysis.

Paediatric population

Sofosbuvir, GS-331007 and velpatasvir exposures in paediatric patients aged 3 years and older receiving oral once daily doses of sofosbuvir/velpatasvir 400 mg/100 mg, 200 mg/50 mg or 150 mg/37.5 mg per day were similar to those in adults receiving once daily doses of sofosbuvir/velpatasvir 400 mg/100 mg.

The pharmacokinetics of sofosbuvir, GS-331007 and velpatasvir in paediatric patients aged less than 3 years have not been established (see section 4.2).

5.3 **Preclinical safety data**

Sofosbuvir

Exposure to sofosbuvir in rodent studies could not be detected likely due to high esterase activity and exposure to the major metabolite GS-331007 was instead used to estimate exposure margins.

Sofosbuvir was not genotoxic in a battery of *in vitro* or *in vivo* assays, including bacterial mutagenicity, chromosome aberration using human peripheral blood lymphocytes and *in vivo* mouse micronucleus assays. No teratogenic effects were observed in the rat and rabbit developmental toxicity studies with sofosbuvir. Sofosbuvir had no adverse effects on behaviour, reproduction, or development of the offspring in the rat pre- and post-natal development study.

Sofosbuvir was not a carcinogen in the 2-year mouse and rat carcinogenicity studies at GS-331007 exposures up to 15 and 9 times, respectively, higher than human exposure.
Velpatasvir

Velpatasvir was not genotoxic in a battery of *in vitro* or *in vivo* assays, including bacterial mutagenicity, chromosome aberration using human peripheral blood lymphocytes and *in vivo* rat micronucleus assays.

Velpatasvir was not carcinogenic in the 6-month rasH2 transgenic mouse and 2-year rat carcinogenicity studies at exposures at least 50-times and 5-times higher than human exposure, respectively.

Velpatasvir had no adverse effects on mating and fertility. No teratogenic effects were observed in the mouse and rat developmental toxicity studies with velpatasvir at AUC exposures approximately 31- and 6-fold higher, respectively, than the human exposure at the recommended clinical dose. However, a possible teratogenic effect was indicated in rabbits where an increase in total visceral malformations was seen in exposed animals at AUC exposures up to 0.7-fold the human exposure at recommended clinical dose. The human relevance of this finding is not known. Velpatasvir had no adverse effects on behaviour, reproduction, or development of the offspring in the rat pre- and post-natal development study at AUC exposures approximately 5-fold higher than the human exposure at the recommended clinical dose.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Granules core

- Copovidone (E1208)
- Lactose monohydrate
- Microcrystalline cellulose (E460)
- Croscarmellose sodium (E468)
- Colloidal anhydrous silica (E551)
- Magnesium stearate (E470b)

Film-coating

- Hypromellose (E464)
- Titanium dioxide (E171)
- Macrogol (E1521)
- Basic butylated methacrylate copolymer (E1205) Talc (E553b)
- Stearic acid (E570)
- Colloidal anhydrous silica (E551)
- L-tartaric acid (E334)

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

3 years.

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.
6.5 Nature and contents of container

6.6 Special precautions for disposal
Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER
Gilead Sciences Ireland UC
Carrigtohill
County Cork, T45 DP77
Ireland

8. MARKETING AUTHORISATION NUMBER(S)
EU/1/16/1116/004
EU/1/16/1116/003

9. DATE OF FIRST AUTHORIZATION/RENEWAL OF THE AUTHORIZATION
Date of first authorisation: 06 July 2016
Date of latest renewal: 22 March 2021

10. DATE OF REVISION OF THE TEXT
Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
ANNEX II

A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORIZATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer responsible for batch release

Gilead Sciences Ireland UC
IDA Business & Technology Park
Carrigtomhill
County Cork
IRELAND

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to restricted medical prescription (see Annex I: Summary of Product Characteristics, section 4.2).

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

- Periodic safety update reports (PSURs)

The marketing authorisation holder shall submit the first PSUR for this product within 6 months following authorisation. Subsequently, the marketing authorisation holder (MAH) shall submit PSUR for this product in accordance with the requirements set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and published on the European medicines web-portal.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

- Risk management plan (RMP)

The marketing authorisation holder (MAH) shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2 of the marketing authorisation and any agreed subsequent updates of the RMP.

An updated RMP should be submitted:

- At the request of the European Medicines Agency;
- Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.
ANNEX III

LABELLING AND PACKAGE LEAFLET
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING AND THE IMMEDIATE PACKAGING

BOTTLE AND CARTON LABELLING

1. NAME OF THE MEDICINAL PRODUCT

Epclusa 400 mg/100 mg film-coated tablets
sofosbuvir/velpatasvir

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each film-coated tablet contains 400 mg sofosbuvir and 100 mg velpatasvir.

3. LIST OF EXCIPIENTS

4. PHARMACEUTICAL FORM AND CONTENTS

28 film-coated tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.
Oral use.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE
11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Gilead Sciences Ireland UC
Carrigtomhill
County Cork, T45 DP77
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/16/1116/001

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

Epclusa 400 mg/100 mg tablets [Outer packaging only]

16. INFORMATION IN BRAILLE

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC
SN
NN
PARTICULARS TO APPEAR ON THE OUTER PACKAGING AND THE IMMEDIATE PACKAGING

BOTTLE AND CARTON LABELLING

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epclusa 200 mg/50 mg film-coated tablets</td>
</tr>
<tr>
<td>sofosbuvir/velpatasvir</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. STATEMENT OF ACTIVE SUBSTANCE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each film-coated tablet contains 200 mg sofosbuvir and 50 mg velpatasvir.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. LIST OF EXCIPIENTS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4. PHARMACEUTICAL FORM AND CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 film-coated tablets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. METHOD AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read the package leaflet before use.</td>
</tr>
<tr>
<td>Oral use.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep out of the sight and reach of children.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. OTHER SPECIAL WARNING(S), IF NECESSARY</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPECIAL STORAGE CONDITIONS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE</th>
</tr>
</thead>
</table>
11. NAME AND ADDRESS OF THE MARKETING AUTHORIZATION HOLDER

Gilead Sciences Ireland UC
Carrigtohill
County Cork, T45 DP77
Ireland

12. MARKETING AUTHORIZATION NUMBER(S)

EU/1/16/1116/002

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Epclusa 200 mg/50 mg tablets [Outer packaging only]

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC
SN
NN
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

CARTON LABELLING

1. NAME OF THE MEDICINAL PRODUCT

Epclusa 200 mg/50 mg coated granules in sachet
sofosbuvir/velpatasvir

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each sachet contains 200 mg sofosbuvir and 50 mg velpatasvir.

3. LIST OF EXCIPIENTS

Contains lactose. See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

28 sachets containing coated granules

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.
Oral use.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS
10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Gilead Sciences Ireland UC
Carrigtwohill
County Cork, T45 DP77
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/16/1116/004 28 sachets

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Epclusa 200 mg/50 mg coated granules in sachet [Outer packaging only]

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC
SN
NN
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNIT SACHET

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>NAME OF THE MEDICINAL PRODUCT</td>
</tr>
<tr>
<td></td>
<td>Epclusa 200 mg/50 mg coated granules in sachet</td>
</tr>
<tr>
<td></td>
<td>sofosbuvir/velpatasvir</td>
</tr>
<tr>
<td></td>
<td>Oral use</td>
</tr>
<tr>
<td>2.</td>
<td>METHOD OF ADMINISTRATION</td>
</tr>
<tr>
<td>3.</td>
<td>EXPIRY DATE</td>
</tr>
<tr>
<td></td>
<td>EXP</td>
</tr>
<tr>
<td>4.</td>
<td>BATCH NUMBER</td>
</tr>
<tr>
<td></td>
<td>Lot</td>
</tr>
<tr>
<td>5.</td>
<td>CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT</td>
</tr>
<tr>
<td>6.</td>
<td>OTHER</td>
</tr>
<tr>
<td></td>
<td>GILEAD</td>
</tr>
</tbody>
</table>
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

CARTON LABELLING

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epclusa 150 mg/37.5 mg coated granules in sachet sofosbuvir/velpatasvir</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. STATEMENT OF ACTIVE SUBSTANCE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each sachet contains 150 mg sofosbuvir and 37.5 mg velpatasvir.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. LIST OF EXCIPIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains lactose. See leaflet for further information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. PHARMACEUTICAL FORM AND CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 sachets containing coated granules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. METHOD AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read the package leaflet before use. Oral use.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep out of the sight and reach of children.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. OTHER SPECIAL WARNING(S), IF NECESSARY</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

| 9. SPECIAL STORAGE CONDITIONS |
10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Gilead Sciences Ireland UC
Carrigtohill
County Cork, T45 DP77
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/16/1116/003 28 sachets

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Epclusa 150 mg/37.5 mg coated granules in sachet [Outer packaging only]

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC
SN
NN
<table>
<thead>
<tr>
<th>MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SACHET</td>
</tr>
</tbody>
</table>

1. **NAME OF THE MEDICINAL PRODUCT**

Epclusa 150 mg/37.5 mg coated granules in sachet
sofosbuvir/velpatasvir
Oral use

2. **METHOD OF ADMINISTRATION**

3. **EXPIRY DATE**

EXP

4. **BATCH NUMBER**

Lot

5. **CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT**

6. **OTHER**

GILEAD
B. PACKAGE LEAFLET
Package leaflet: Information for the user

Epclusa 400 mg/100 mg film-coated tablets
Epclusa 200 mg/50 mg film-coated tablets
sofosbuvir/velpatasvir

Read all of this leaflet carefully before you start taking this medicine because it contains important information for you.

- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor or pharmacist.
- This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours.
- If you get any side effects talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet
1. What Epclusa is and what it is used for
2. What you need to know before you take Epclusa
3. How to take Epclusa
4. Possible side effects
5. How to store Epclusa
6. Contents of the pack and other information

If Epclusa has been prescribed for your child, please note that all the information in this leaflet is addressed to your child (in this case please read “your child” instead of “you”).

1. What Epclusa is and what it is used for

Epclusa is a medicine that contains the active substances sofosbuvir and velpatasvir. Epclusa is given to treat chronic (long-term) hepatitis C virus infection in adults and children aged 3 years and older.

The active substances in this medicine work together by blocking two different proteins that the virus needs to grow and reproduce itself, allowing the infection to be permanently eliminated from the body.

It is very important that you also read the leaflets for the other medicines that you will be taking with Epclusa. If you have any questions about your medicines, please ask your doctor or pharmacist.

2. What you need to know before you take Epclusa

Do not take Epclusa
- If you are allergic to sofosbuvir, velpatasvir or any of the other ingredients of this medicine (listed in section 6 of this leaflet).

⇒ If this applies to you, do not take Epclusa and tell your doctor immediately.

- If you are currently taking any of the following medicines:
 - rifampicin and rifabutin (antibiotics used to treat infections, including tuberculosis);
 - St. John’s wort (herbal medicine used to treat depression);
 - carbamazepine, phenobarbital and phenytoin (medicines used to treat epilepsy and prevent seizures).
Warnings and precautions

Talk to your doctor if you:

- **have liver problems** other than from hepatitis C, for instance
 - **if you have** a current or previous infection with the **hepatitis B virus**, since your doctor may want to monitor you more closely;
 - **if you have had a liver transplant**
- **have kidney problems or if you are on kidney dialysis**, since Epclusa has not been fully tested in patients with some severe kidney problems;
- **are taking treatment for human immunodeficiency virus (HIV) infection**, since your doctor may want to monitor you more closely.

Talk to your doctor or pharmacist before taking Epclusa if:

- you currently take, or have taken in the last few months, the medicine amiodarone to treat irregular heartbeats, as it may result in a life-threatening slowing of your heart beat. Your doctor may consider different treatments if you have taken this medicine. If treatment with Epclusa is needed, you may require additional heart monitoring.
- you have diabetes. You may need closer monitoring of your blood glucose levels and/or adjustment of your diabetes medicines after starting Epclusa. Some diabetic patients have experienced low sugar levels in the blood (hypoglycaemia) after starting treatment with medicines like Epclusa.

Tell your doctor immediately if you currently take, or have taken in the last months any medicines for heart problems and during treatment you experience:

- slow or irregular heartbeat, or heart rhythm problems;
- shortness of breath or worsening of existing shortness of breath;
- chest pain;
- light-headedness;
- palpitations;
- near fainting or fainting.

Blood tests

Your doctor will test your blood before, during and after your treatment with Epclusa. This is so that:

- Your doctor can decide if you should take Epclusa and for how long;
- Your doctor can confirm that your treatment has worked and you are free of the hepatitis C virus.

Children and adolescents

Do not give this medicine to children under 3 years of age. The use of Epclusa in patients under 3 years of age has not been studied.

Other medicines and Epclusa

Tell your doctor or pharmacist if you are taking, have recently taken or might take any other medicines.

Warfarin and other similar medicines called vitamin K antagonists are used to thin the blood. Your doctor may need to increase the frequency of your blood tests to check how well your blood can clot.

Your liver function may change with treatment of hepatitis C and therefore may affect other medications (e.g. medicines used to suppress your immune system, etc.). Your doctor may need to closely monitor these other medicines you are taking and make adjustments after starting Epclusa.

If you are not sure talk to your doctor or pharmacist.
Some medicines should not be taken with Epclusa.

- Do not take with any other medicine that contains sofosbuvir, one of the active substances in Epclusa.

Tell your doctor or pharmacist if you are taking any of the medicines below:

- amiodarone used to treat irregular heartbeats;
- rifapentine (antibiotic used to treat infections, including tuberculosis);
- oxcarbazepine (medicine used to treat epilepsy and prevent seizures);
- tenofovir disoproxil fumarate or any medicine containing tenofovir disoproxil fumarate, used to treat HIV infection and chronic hepatitis B;
- efavirenz used to treat HIV infection;
- digoxin used to treat heart conditions;
- dabigatran used to thin the blood;
- modafinil used to treat sleep disorders;
- rosuvastatin or other statins used to treat high cholesterol.

Taking Epclusa with any of these may stop your medicines from working properly, or make any side effects worse. Your doctor may need to give you a different medicine or adjust the dose of medicine you are taking. This change could be to Epclusa or another medicine you are taking.

- Get advice from a doctor or pharmacist if you take medicines used to treat stomach ulcers, heartburn or acid reflux as they can decrease the amount of velpatasvir in your blood. These medicines include:
 - antacids (such as aluminium/magnesium hydroxide or calcium carbonate). These should be taken at least 4 hours before or 4 hours after Epclusa;
 - proton pump inhibitors (such as omeprazole, lansoprazole, rabeprazole, pantoprazole and esomeprazole). Epclusa should be taken with food 4 hours before using a proton pump inhibitor.
 - H₂-receptor antagonists (such as famotidine, cimetidine, nizatidine or ranitidine). If you need high doses of these medicines your doctor may give you a different medicine instead or adjust the dose of the medicine you are taking.

These medicines can decrease the amount of velpatasvir in your blood. If you are taking one of these medicines your doctor will either give you a different medicine for stomach ulcers, heartburn or acid reflux, or recommend how and when you take that medicine.

Pregnancy and contraception

The effects of Epclusa during pregnancy are not known. If you are pregnant, think you may be pregnant or are planning to have a baby, ask your doctor for advice before taking this medicine.

Epclusa is sometimes used together with ribavirin. Ribavirin can harm your unborn baby. It is therefore very important that you (or your partner) do not become pregnant during this treatment or for a period of time after completing treatment. You must read the “Pregnancy” section in the ribavirin package leaflet very carefully. Ask your doctor for effective contraception method suitable for you and your partner.

Breast-feeding

Do not breast-feed during treatment with Epclusa. It is not known whether sofosbuvir or velpatasvir, the two active substances of Epclusa, pass into human breast milk.

Driving and using machines

Epclusa should not affect your ability to drive or use any tools or machinery.
Epclusa contains sodium
This medicine contains less than 1 mmol sodium (23 mg) per tablet, that is to say essentially ‘sodium-free’.

3. How to take Epclusa

Always take this medicine exactly as your doctor has told you. Check with your doctor or pharmacist if you are not sure.

Recommended dose
The recommended dose of Epclusa in adults is one 400 mg/100 mg tablet once a day for 12 weeks.
The recommended dose of Epclusa in patients aged 3 to less than 18 years is based on weight. Take Epclusa as advised by your doctor.

Swallow the tablet(s) whole with or without food. Do not chew, crush or split the tablet as it has a very bitter taste.

If you are taking an antacid (medicines used to relieve heartburn), take it at least 4 hours before or at least 4 hours after Epclusa.

If you are taking a proton pump inhibitor (medicines used to reduce acid production), take Epclusa with food 4 hours before using a proton pump inhibitor.

If you are sick (vomit) after taking Epclusa it may affect the amount of Epclusa in your blood. This may make Epclusa work less well.
• If you are sick (vomit) less than 3 hours after taking Epclusa, take another dose.
• If you are sick (vomit) more than 3 hours after taking Epclusa, you do not need to take another dose until your next scheduled dose.

If you take more Epclusa than you should
If you accidentally take more than the recommended dose you should contact your doctor or nearest emergency department immediately for advice. Keep the tablet bottle with you so that you can easily describe what you have taken.

If you forget to take Epclusa
It is important not to miss a dose of this medicine.

If you do miss a dose, work out how long it is since you last took your Epclusa:
• If you notice within 18 hours of the time you usually take Epclusa, you must take the dose as soon as possible. Then take the next dose at your usual time.
• If it’s 18 hours or more after the time you usually take Epclusa, wait and take the next dose at your usual time. Do not take a double dose (two doses close together).

Do not stop taking Epclusa
Do not stop taking this medicine unless your doctor tells you to. It is very important that you complete the full course of treatment to give the medicine the best chance to treat your hepatitis C virus infection.

If you have any further questions on the use of this medicine, ask your doctor or pharmacist.
4. Possible side effects

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Very common side effects
(may affect more than 1 in 10 people)
- vomiting (observed in paediatric patients aged 3 to < 6 years)

Common side effects
(may affect up to 1 in 10 people)
- rash

Uncommon side effects
(may affect up to 1 in 100 people)
- swelling of the face, lips, tongue or throat (angioedema).

Other effects that may be seen during treatment with sofosbuvir:

The frequency of the following side effects is not known (frequency cannot be estimated from the available data).
- a wide spread severe rash with peeling skin which may be accompanied by fever, flu like symptoms, blisters in the mouth, eyes, and/or genitals (Stevens Johnson syndrome).

➔ **If you get any side effects tell your doctor.**

Reporting of side effects

If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. How to store Epclusa

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the bottle and carton after “EXP”. The expiry date refers to the last day of that month.

This medicine does not require any special storage conditions.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.

6. Contents of the pack and other information

What Epclusa contains

- **The active substances are** sofosbuvir and velpatasvir. Each film-coated tablet contains either 400 mg sofosbuvir and 100 mg velpatasvir or 200 mg sofosbuvir and 50 mg velpatasvir.

- **The other ingredients are**

 Tablet core:

 Copovidone (E1208), microcrystalline cellulose (E460), croscarmellose sodium (E468) (see section 2 of this leaflet), magnesium stearate (E470b)
Film-coating:
Poly(vinyl alcohol) (E1203), titanium dioxide (E171), macrogol (E1521), talc (E553b), iron oxide red (E172)

What Epclusa looks like and contents of the pack
Epclusa 400 mg/100 mg film-coated tablets are pink, diamond-shaped tablets debossed with “GSI” on one side and “7916” on the other side. The tablet is 20 mm long and 10 mm wide.

Epclusa 200 mg/50 mg film-coated tablets are pink, oval-shaped tablets debossed with “GSI” on one side and “S/V” on the other side. The tablet is 14 mm long and 7 mm wide.

The following pack sizes are available for both the 400 mg/100 mg and 200 mg/50 mg film-coated tablets:
- outer cartons containing 1 bottle of 28 film-coated tablets

Marketing Authorisation Holder
Gilead Sciences Ireland UC
Carrigtohill
County Cork, T45 DP77
Ireland

Manufacturer
Gilead Sciences Ireland UC
IDA Business & Technology Park
Carrigtohill
County Cork
Ireland

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder:

België/Belgique/Belgien
Gilead Sciences Belgium SRL-BV
Tél/Tel: + 32 (0) 24 01 35 50

Lietuva
Gilead Sciences Ireland UC
Tel: + 353 (0) 1 686 1888

България
Gilead Sciences Ireland UC
Тел.: + 353 (0) 1 686 1888

Luxembourg/Luxemburg
Gilead Sciences Belgium SRL-BV
Tél/Tel: + 32 (0) 24 01 35 50

Цeská republika
Gilead Sciences s.r.o.
Tel: + 420 910 871 986

Magyarország
Gilead Sciences Ireland UC
Tel: + 353 (0) 1 686 1888

Danmark
Gilead Sciences Sweden AB
Tlf: + 46 (0) 8 5057 1849

Malta
Gilead Sciences Ireland UC
Tel: + 353 (0) 1 686 1888

Deutschland
Gilead Sciences GmbH
Tel: + 49 (0) 89 899890-0

Nederland
Gilead Sciences Netherlands B.V.
Tel: + 31 (0) 20 718 36 98

Eesti
Gilead Sciences Ireland UC
Tel: + 353 (0) 1 686 1888

Norge
Gilead Sciences Sweden AB
Tlf: + 46 (0) 8 5057 1849
This leaflet was last revised in

Detailed information on this medicine is available on the European Medicines Agency web site: http://www.ema.europa.eu.
Package leaflet: Information for the user

Epclusa 200 mg/50 mg coated granules in sachet
Epclusa 150 mg/37.5 mg coated granules in sachet
sofosbuvir/velpatasvir

Read all of this leaflet carefully before you start taking this medicine because it contains important information for you.
- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor or pharmacist.
- This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours.
- If you get any side effects talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet
1. What Epclusa is and what it is used for
2. What you need to know before you take Epclusa
3. How to take Epclusa
4. Possible side effects
5. How to store Epclusa
6. Contents of the pack and other information

If Epclusa has been prescribed for your child, please note that all the information in this leaflet is addressed to your child (in this case please read “your child” instead of “you”).

1. What Epclusa is and what it is used for

Epclusa granules are a medicine that contains the active substances sofosbuvir and velpatasvir which are given in a granule formulation. Epclusa is given to treat chronic (long-term) hepatitis C virus infection in adults and children aged 3 years of age and older.

The active substances in this medicine work together by blocking two different proteins that the virus needs to grow and reproduce itself, allowing the infection to be permanently eliminated from the body.

It is very important that you also read the leaflets for the other medicines that you will be taking with Epclusa. If you have any questions about your medicines, please ask your doctor or pharmacist.

2. What you need to know before you take Epclusa

Do not take Epclusa
• If you are allergic to sofosbuvir, velpatasvir or any of the other ingredients of this medicine (listed in section 6 of this leaflet).

⇒ If this applies to you, do not take Epclusa and tell your doctor immediately.

• If you are currently taking any of the following medicines:
 • rifampicin and rifabutin (antibiotics used to treat infections, including tuberculosis);
 • St. John’s wort (herbal medicine used to treat depression);
 • carbamazepine, phenobarbital and phenytoin (medicines used to treat epilepsy and prevent seizures).
Warnings and precautions
Talk to your doctor if you:
• **have liver problems** other than from hepatitis C, for instance
 • if you have a current or previous infection with the **hepatitis B** virus, since your doctor may want to monitor you more closely;
 • if you have had a liver transplant
• **have kidney problems or if you are on kidney dialysis**, since Epclusa has not been fully tested in patients with some severe kidney problems;
• **are taking treatment for human immunodeficiency virus (HIV) infection**, since your doctor may want to monitor you more closely.

Talk to your doctor or pharmacist before taking Epclusa if:
• you currently take, or have taken in the last few months, the medicine amiodarone to treat irregular heartbeats, as it may result in a life-threatening slowing of your heart beat. Your doctor may consider different treatments if you have taken this medicine. If treatment with Epclusa is needed, you may require additional heart monitoring.
• you have diabetes. You may need closer monitoring of your blood glucose levels and/or adjustment of your diabetes medicines after starting Epclusa. Some diabetic patients have experienced low sugar levels in the blood (hypoglycaemia) after starting treatment with medicines like Epclusa.

Tell your doctor immediately if you currently take, or have taken in the last months any medicines for heart problems and during treatment you experience:
• slow or irregular heartbeat, or heart rhythm problems;
• shortness of breath or worsening of existing shortness of breath;
• chest pain;
• light-headedness;
• palpitations;
• near fainting or fainting.

Blood tests
Your doctor will test your blood before, during and after your treatment with Epclusa. This is so that:
• Your doctor can decide if you should take Epclusa and for how long;
• Your doctor can confirm that your treatment has worked and you are free of the hepatitis C virus.

Children and adolescents
Do not give this medicine to children under 3 years of age. The use of Epclusa in patients under 3 years of age has not been studied.

Other medicines and Epclusa
Tell your doctor or pharmacist if you are taking, have recently taken or might take any other medicines.

Warfarin and other similar medicines called vitamin K antagonists are used to thin the blood. Your doctor may need to increase the frequency of your blood tests to check how well your blood can clot.

Your liver function may change with treatment of hepatitis C and therefore may affect other medications (e.g. medicines used to suppress your immune system, etc.). Your doctor may need to closely monitor these other medicines you are taking and make adjustments after starting Epclusa.

If you are not sure talk to your doctor or pharmacist.
Some medicines should not be taken with Epclusa.

- Do not take with any other medicine that contains sofosbuvir, one of the active substances in Epclusa.

Tell your doctor or pharmacist if you are taking any of the medicines below:

- **amiodarone** used to treat irregular heartbeats;
- **rifapentine** (antibiotic used to treat infections, including tuberculosis);
- **oxcarbazepine** (medicine used to treat epilepsy and prevent seizures);
- **tenofovir disoproxil fumarate** or any medicine containing tenofovir disoproxil fumarate, used to treat HIV infection and chronic hepatitis B;
- **efavirenz** used to treat HIV infection;
- **digoxin** used to treat heart conditions;
- **dabigatran** used to thin the blood;
- **modafinil** used to treat sleep disorders;
- **rosuvastatin** or other statins used to treat high cholesterol.

Taking Epclusa with any of these may stop your medicines from working properly, or make any side effects worse. Your doctor may need to give you a different medicine or adjust the dose of medicine you are taking. This change could be to Epclusa or another medicine you are taking.

- **Get advice from a doctor or pharmacist** if you take medicines used to treat stomach ulcers, heartburn or acid reflux as they can decrease the amount of velpatasvir in your blood. These medicines include:
 - antacids (such as aluminium/magnesium hydroxide or calcium carbonate). These should be taken at least 4 hours before or 4 hours after Epclusa;
 - proton pump inhibitors (such as omeprazole, lansoprazole, rabeprazole, pantoprazole and esomeprazole). Epclusa should be taken with food 4 hours before using a proton pump inhibitor.
 - H₂-receptor antagonists (such as famotidine, cimetidine, nizatidine or ranitidine). If you need high doses of these medicines your doctor may give you a different medicine instead or adjust the dose of the medicine you are taking.

These medicines can decrease the amount of velpatasvir in your blood. If you are taking one of these medicines your doctor will either give you a different medicine for stomach ulcers, heartburn or acid reflux, or recommend how and when you take that medicine.

Pregnancy and contraception
The effects of Epclusa during pregnancy are not known. If you are pregnant, think you may be pregnant or are planning to have a baby, ask your doctor for advice before taking this medicine.

Epclusa is sometimes used together with ribavirin. Ribavirin can harm your unborn baby. It is therefore very important that you (or your partner) do not become pregnant during this treatment or for a period of time after completing treatment. You must read the “Pregnancy” section in the ribavirin package leaflet very carefully. Ask your doctor for effective contraception method suitable for you and your partner.

Breast-feeding
Do not breast-feed during treatment with Epclusa. It is not known whether sofosbuvir or velpatasvir, the two active substances of Epclusa, pass into human breast milk.

Driving and using machines
Epclusa should not affect your ability to drive or use any tools or machinery.
Epclusa granules contain lactose
If you have been told by your doctor that you have an intolerance to some sugars, contact your doctor before taking this medicine.

Epclusa granules contain sodium
This medicine contains less than 1 mmol sodium (23 mg) per sachet, that is to say essentially ‘sodium-free’.

3. How to take Epclusa

Always take this medicine exactly as your doctor has told you. Check with your doctor or pharmacist if you are not sure.

Recommended dose
Epclusa is to be taken as advised by your doctor. Your doctor will tell you for how long you should take Epclusa and how many sachets you should take.

The recommended dose is the entire contents of the sachet(s), taken once daily with or without food.

Giving Epclusa granules with food to aid swallowing:
1. Hold sachet with cut line on top
2. Shake sachet gently to settle contents
3. Tear sachet open along cut line, or use scissors to cut across line
4. Carefully pour entire contents of sachet onto one or more spoonfuls of non-acidic soft food such as chocolate syrup or ice-cream at or below room temperature. Do not use fruit-based foods such as apple sauce or sorbet as these are acidic
5. Make sure no granules remain in the sachet
6. Take all the granules within 15 minutes of gently mixing with food
7. Swallow combination of food and granules without chewing to avoid a bitter taste. Make sure that all the food is eaten.

Giving Epclusa granules without food or water or with water to aid swallowing:
1. Hold sachet with cut line on top
2. Shake sachet gently to settle contents
3. Tear sachet open along cut line, or use scissors to cut across line
4. The granules can be taken directly in the mouth and swallowed without chewing to avoid a bitter taste or with non-acidic liquids such as water. Do not use fruit juices, for example apple, cranberry, grape, orange, pineapple as these are acidic
5. Make sure no granules remain in the sachet
6. Swallow all the granules.

If you are taking an antacid (medicines used to relieve heartburn), take it at least 4 hours before or at least 4 hours after Epclusa.

If you are taking a proton pump inhibitor (medicines used to reduce acid production), take Epclusa with food 4 hours before using a proton pump inhibitor.

If you are sick (vomit) after taking Epclusa it may affect the amount of Epclusa in your blood. This may make Epclusa work less well.
• If you are sick (vomit) less than 3 hours after taking Epclusa, take another dose.
• If you are sick (vomit) more than 3 hours after taking Epclusa, you do not need to take another dose until your next scheduled dose.
If you take more Epclusa than you should
If you accidentally take more than the recommended dose you should contact your doctor or nearest emergency department immediately for advice. Keep the sachet and carton with you so that you can easily describe what you have taken.

If you forget to take Epclusa
It is important not to miss a dose of this medicine.

If you do miss a dose, work out how long it is since you last took your Epclusa:
- If you notice within 18 hours of the time you usually take Epclusa, you must take the dose as soon as possible. Then take the next dose at your usual time.
- If it’s 18 hours or more after the time you usually take Epclusa, wait and take the next dose at your usual time. Do not take a double dose (two doses close together).

Do not stop taking Epclusa
Do not stop taking this medicine unless your doctor tells you to. It is very important that you complete the full course of treatment to give the medicine the best chance to treat your hepatitis C virus infection.

If you have any further questions on the use of this medicine, ask your doctor or pharmacist.

4. Possible side effects
Like all medicines, this medicine can cause side effects, although not everybody gets them.

Very common side effects
(may affect more than 1 in 10 people)
- vomiting (observed in paediatric patients aged 3 to < 6 years)

Common side effects
(may affect up to 1 in 10 people)
- rash

Uncommon side effects
(may affect up to 1 in 100 people)
- swelling of the face, lips, tongue or throat (angioedema).

Other effects that may be seen during treatment with sofosbuvir:
The frequency of the following side effects is not known (frequency cannot be estimated from the available data).
- a wide spread severe rash with peeling skin which may be accompanied by fever, flu like symptoms, blisters in the mouth, eyes, and/or genitals (Stevens Johnson syndrome).

➔ If you get any side effects tell your doctor.

Reporting of side effects
If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix VI. By reporting side effects you can help provide more information on the safety of this medicine.

5. How to store Epclusa
Keep this medicine out of the sight and reach of children.
Do not use this medicine after the expiry date which is stated on the sachet and carton after “EXP”. The expiry date refers to the last day of that month.

This medicine does not require any special storage conditions.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.

6. Contents of the pack and other information

What Epclusa contains

The active substances are sofosbuvir and velpatasvir.

- Epclusa 150 mg/37.5 mg coated granules in sachet contains 150 mg sofosbuvir and 37.5 mg velpatasvir.
- Epclusa 200 mg/50 mg coated granules in sachet contains 200 mg sofosbuvir and 50 mg velpatasvir.
- The other ingredients are copovidone (E1208), lactose monohydrate (see section 2 of this leaflet), microcrystalline cellulose (E460), croscarmellose sodium (E468) (see section 2 of this leaflet), colloidal anhydrous silica (E551), magnesium stearate (E470b), hypromellose (E464), titanium dioxide (E171), macrogol (E1521), butylated methacrylate copolymer (E1205), talc (E553b), stearic acid (E570), l-tartaric acid (E334).

What Epclusa looks like and contents of the pack

The granules are white to off-white and contained in a sachet.

The following pack size is available:

- outer cartons containing 28 sachets

Marketing Authorisation Holder

Gilead Sciences Ireland UC
Carrigtohill
County Cork, T45 DP77
Ireland

Manufacturer

Gilead Sciences Ireland UC
IDA Business & Technology Park
Carrigtohill
County Cork
Ireland

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder:

Belgïe/Belgique/Belgien
Gilead Sciences Belgium SRL-BV
Tél/Tel: + 32 (0) 24 01 35 50

Lietuva
Gilead Sciences Ireland UC
Tel: + 353 (0) 1 686 1888

България
Gilead Sciences Ireland UC
Тел.: + 353 (0) 1 686 1888

Luxembourg/Luxemburg
Gilead Sciences Belgium SRL-BV
Tél/Tel: + 32 (0) 24 01 35 50